top of page

Hubble's Nebula Discoveries

This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors.

Carina nebula.jpg (1).png

Beyond the solar system, Hubble has studied star formation and death in our Galaxy and nearby galaxies.

 

As a first example, this image of the Carina Nebula was released for Hubble’s 17th anniversary. At the time (2007), it was one of the largest panoramic images ever taken with Hubble’s Advanced Camera for Surveys. It is a 50-light-year-wide view of the central region of the Carina Nebula, where a maelstrom of star birth -- and death -- is taking place. The nebula is sculpted by the action of outflowing winds and scorching ultraviolet radiation from the monster stars that inhabit this inferno. The stars are shredding the surrounding material that is the last vestige of the giant cloud from which the stars were born.

 

The immense nebula contains at least a dozen brilliant stars that are roughly estimated to be at least 50 to 100 times the mass of our Sun. The most unique and opulent inhabitant is the star Eta Carinae, at far left. Eta Carinae is in the final stages of its brief and eruptive lifespan, as evidenced by two billowing lobes of gas and dust that presage its upcoming explosion as a titanic supernova.

 

The outflow in the Carina region started three million years ago when the nebula's first generation of newborn stars condensed and ignited in the middle of a huge cloud of cold molecular hydrogen. Radiation from these stars carved out an expanding bubble of hot gas. The island-like clumps of dark clouds scattered across the nebula are nodules of dust and gas that are resisting being eaten away by photoionization. The blast of stellar winds and blistering ultraviolet radiation within the cavity is now compressing the surrounding walls of cold hydrogen. This is triggering a second stage of new star formation.

Carina is about 7,500 light years away (2,300 parsecs).

pillars of creation-optical.jpg.png

Using Hubble’s newer cameras provides a stunning image of an old favorite. This image of the Pillars of Creation in the Eagle Nebula has twice the resolution, several times the area, and more than twenty times the pixels of the 1995 version. The image was obtained with the optical bands of the Wide Field Camera 3 (WFC3) in 2015.

 

This taller image includes the gas at the bottom of the pillars being blown down and trailing away. Numerous small features indicate the pervasiveness of pillars of every size in this region.

M16 pillars of creation.jpg.png

This is the first of a sequence of three images to be shown relatively rapidly. We begin the anniversary year by revisiting a legendary image: the “Pillars of Creation” in the Eagle Nebula. This image was the first Hubble image to fascinate the public, and still remains one of Hubble’s most popular images. It was obtained in 1995 with the Wide Field and Planetary Camera 2 (WFPC2). Inside the gaseous towers, which are light-years long, the interstellar gas is dense enough to collapse under its own weight, forming young stars that continue to grow as they accumulate more and more mass from their surroundings. The object is 6,500 light years away (2,000 parsecs). Like the pillars in Carina, these dark clouds are being eroded by winds and radiation from hot, young stars. The stars forming within the pillars give them their “creation” nickname.

pillars of creation-infrared.jpg.png

Using the infrared capabilities of Wide Field Camera 3 (WFC3), one can see the pillars in a whole new light. Much of the gas of the nebula is transparent to the longer wavelengths of infrared light, revealing a tremendous number of stars. The seemingly solid, visible-light pillars are shown in the infrared to be a combination of dense clouds and the shadows they cast behind them. Such high resolution visible light and infrared light comparisons point toward a bright future when Hubble and James Webb Space Telescope observations can be similarly compared and contrasted.

horse head nebula-optical.jpg.png

This is the first of two images to be shown of the Horsehead Nebula. The transition should be done without too much delay to the next image. In 2001, after asking the public which object should be observed, the Hubble Heritage Project took this image of the Horsehead Nebula with the Wide Field and Planetary Camera 2 (WFPC2).

 

While the nebula makes for a striking silhouette, the dark cloud is short on detail in a visible light image. The small inset shows a ground-based optical image of the surrounding region. The distance to the object is about 1,200 light years (490 parsec).

horse head nebula-infrared.jpg.png

Using the enhanced infrared sensitivity of Wide Field Camera 3, Hubble was able to get much more detail in this 2013 infrared portrait of the Horsehead. The relatively featureless dark clouds are transformed into a glowing gaseous landscape that almost appears three-dimensional in the image.

 

There are videos that zoom into the nebula and also show the 3D effect.

orion nebula.jpg.png

This image of the Orion Nebula shows the discovery of debris disks – planetary systems in formation around newly created stars. As the gas and dust collapses under gravity, stars are born, and in the process, disks and planets often form out of the residual material. The distance to the Orion Nebula is 1,500 light years (460 parsecs).

 

http://hubblesite.org/newscenter/archive/releases/1995/45/

 

A beautiful composite image of the Orion Nebula from both the HST ACS and the ESO MPI at La Silla is available:

http://hubblesite.org/newscenter/archive/releases/2006/01/

Supplemental Movies: Orion Fly through:

http://hubblesite.org/newscenter/archive/releases/2001/13/video/a/ Zoom into Orion: http://hubblesite.org/newscenter/archive/releases/2001/13/video/a/

NGC 602.jpg.png

At the heart of this star-forming region lies star cluster NGC 602. It is a cluster of newly formed stars that are blowing a cavity in the center of a star-forming region in the Small Magellanic Cloud, a companion galaxy to our own Milky Way. The high-energy radiation blazing out from the hot young stars is sculpting the inner edge of the outer portions of the nebula, slowly eroding it away and eating into the material beyond. The diffuse outer reaches of the nebula prevent the energetic outflows from streaming away from the cluster.

 

Ridges of dust and gaseous filaments are seen surrounding the cluster. Elephant trunk-like dust pillars point towards the hot blue stars and are telltale signs of their eroding effect.

It is possible to trace how the star formation started at the center of the cluster and propagated outward, with the youngest stars still forming today along the dust ridges. The Small Magellanic Cloud, in the constellation Tucana, is roughly 200,000 light-years from the Earth. Its proximity to us makes it an exceptional laboratory to perform in-depth studies of star formation processes and their evolution in an environment slightly different from our own Milky Way.

This image was taken with Hubble’s Advanced Camera for Surveys.

http://hubblesite.org/newscenter/archive/releases/2007/04/

X-ray from Chandra plus Hubble observations:

http://hubblesite.org/newscenter/archive/releases/2013/17/image/a/

cat's eye nebula.jpg.png

The Cat’s Eye Nebula, formally cataloged NGC 6543, was one of the first planetary nebulae to be discovered. Hubble observations show it is one of the most complex such nebulae seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers, which eventually form bright nebulae with amazing and confounding shapes. This image taken with Hubble's Advanced Camera for Surveys (ACS) reveals the full beauty of a bull's eye pattern of eleven or even more concentric rings, or shells, around the Cat's Eye. Each 'ring' is actually the edge of a spherical bubble seen projected onto the sky — that's why it appears bright along its outer edge.

 

Observations suggest the star ejected its mass in a series of pulses at 1,500- year intervals. These convulsions created dust shells, each of which contains as much mass as all of the planets in our solar system combined (still only one percent of the Sun's mass). These concentric shells make a layered, onionskin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each skin layer is discernible. The Nebula is 3000 light years (1000 parsecs) away.

Butterfly nebula.jpg.png

This beautiful image was taken soon after Servicing Mission 4 as part of the release announcing Hubble’s return to science operations. This planetary nebula is the material blown off of a dying star. A disk around the center restricts the outflows into two oppositely directed lobes, creating a distinct resemblance to a butterfly.

 

Although named the Bug Nebula, many began calling this object the Butterfly Nebula after this image was released.

Crab Nebula.jpg.png

The Crab Nebula derived its name from its appearance in a drawing made by Irish astronomer Lord Rosse in 1844, using a 36-inch telescope. The Crab Nebula is a six-light-year-wide expanding remnant of a star's supernova explosion. Japanese and Chinese astronomers recorded this violent event nearly 1,000 years ago in 1054, as did -- almost certainly -- Native Americans. This composite image was assembled from 24 individual exposures taken with the Hubble Space Telescope’s Wide Field and Planetary Camera 2 in October 1999, January 2000, and December 2000.

 

The orange filaments are the tattered remains of the star and consist mostly of hydrogen. The rapidly spinning neutron star embedded in the center of the nebula is the dynamo powering the nebula's eerie interior bluish glow. The blue light comes from electrons whirling at nearly the speed of light around magnetic field lines from the neutron star. The neutron star, like a lighthouse, ejects twin beams of radiation that appear to pulse 30 times a second due to the neutron star's rotation. A neutron star is the crushed ultra-dense core of the exploded star.

Supernova Remnant.jpg.png

This shell, or bubble, is the result of gas that is being shocked by the expanding blast wave from a supernova. Notice its completely different appearance from the Crab Nebula in the previous slide.

 

Called SNR 0509-67.5 (or SNR 0509 for short), the bubble is the visible remnant of a powerful stellar explosion in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light-years from Earth. Ripples in the shell's surface may be caused by either subtle variations in the density of the ambient interstellar gas, or possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 11 million miles per hour (5,000 kilometers per second).

http://hubblesite.org/newscenter/archive/releases/2010/27/

Supplemental Movie: 3D look at SN remnant

http://hubblesite.org/newscenter/archive/releases/2010/27/video/a/

bottom of page