top of page

Search Results

83 elementos encontrados para ""

  • Preset Portfolio

    Kepler's Exoplanets

  • Space Discoveries of 2021 | SPACELIA

    2021 Space Discoveries Amateur astronomer discovers a new moon around Jupiter A previously-unknown moon has been detected around the largest planet in the solar system. Jupiter is a giant, so it gravitationally attracts many objects into its vicinity. Earth has one major moon, Mars has two: but Jupiter boasts at least 79 moons, and there may be dozens or hundreds more of them that astronomers have yet to identify. The latest discovery was made by amateur astronomer Kai Ly, who found evidence of this Jovian moon in a data set from 2003 that had been collected by researchers using the 3.6-meter Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. Ly they confirmed the moon was likely bound to Jupiter's gravity using data from another telescope called Subaru. The new moon, called EJc0061, belongs to the Carme group of Jovian moons. They orbit in the opposite direction of Jupiter's rotation at an extreme tilt relative to Jupiter's orbital plane. NASA will return to Venus this decade Mars is a popular target for space agencies, but Earth's other neighbor has been garnering more attention recently. In 2020, researchers announced that they had detected traces of phosphine in Venus' atmosphere. It is a possible biosignature gas, and the news certainly reawakened interest in the planet. In early June 2021, NASA announced it will launch two missions to Venus by 2030. One mission, called DAVINCI+ (short for Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging, Plus) will descend through the planet's atmosphere to learn about how it has changed over time. The other mission, VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) will attempt to map the planet's terrain from orbit like never before. Venus has been visited by robotic probes, but NASA has not launched a dedicated mission to the planet since 1989. The interest in Martian exploration may be one reason why Venus has been neglected in recent decades, but the second planet from the sun is also a challenging place to study. Although it may have once been a balmy world with oceans and rivers, a runaway greenhouse effect took hold of Venus around 700 million years ago and now the planet's surface is hot enough to melt lead. The sun is reawakening The sun was experiencing a quiet time in its roughly decade-long cycle, but it is now exiting that phase. The sun has had very little activity in recent years, but the star's surface is now erupting in powerful events that spew out charged particles towards Earth. In early November, for instance, a series of solar outbursts triggered a large geomagnetic storm on our planet. This eruption is known as a coronal mass ejection, or CME. It's essentially a billion-ton cloud of solar material with magnetic fields, and when this bubble pops, it blasts a stream of energetic particles out into the solar system. If this material heads in the direction of Earth, it interacts with our planet's own magnetic field and causes disturbances. These can include ethereal displays of auroras near Earth's poles, but can also include satellite disruptions and energy losses. James Webb Space Telescope flies into space A whole new era of space science began on Christmas Day 2021 with the successful launch of the world's next major telescope. NASA, the European Space Agency and the Canadian Space Agency are collaborating on the $10 billion James Webb Space Telescope (JWST), a project more than three decades in the making. Space telescopes take a long time to plan and assemble: The vision for this particular spacecraft began before its predecessor, the Hubble Space Telescope, had even launched into Earth orbit. Whereas Hubble orbits a few hundred miles from Earth's surface, JWST is heading to an observational perch located about a million miles from our planet. The telescope began its journey towards this spot, called the Earth-sun Lagrange Point 2 (L2), on Dec. 25, 2021 at 7:20 a.m. EST (1220 GMT) when an Ariane 5 rocket launched the precious payload from Europe's Spaceport in Kourou, French Guiana. The telescope will help astronomers answer questions about the evolution of the universe and provide a deeper understanding about the objects found in our very own solar system. Event Horizon Telescope takes high-resolution image of black hole jet In July 2021, the novel project behind the world's first photo of a black hole published an image of a powerful jet blasting off from one of these supermassive objects. The Event Horizon Telescope (EHT) is a global collaboration of eight observatories that work together to create one Earth-sized telescope. The end result is a resolution that is 16 times sharper and an image that is 10 times more accurate than what was possible before. Scientists used EHT's incredible abilities to observe a powerful jet being ejected by the supermassive black hole at the center of the Centaurus A galaxy, one of the brightest objects in the night sky. The galaxy's black hole is so large that it has the mass of 55 million suns. Scientists spot the closest-known black hole to Earth Just 1,500 light-years from Earth lies the closest-known black hole to Earth, now called "The Unicorn ." Tiny black holes are hard to spot, but scientists managed to find this one when they noticed strange behavior from its companion star, a red giant. Researchers observed its light shifting in intensity, which suggested to them that another object was tugging on the star. This black hole is super-lightweight at just three solar masses. Its location in the constellation Monoceros ("the unicorn") and its rarity have inspired this black hole's name. Earth's second 'moon' flies off into space An object dropped into Earth's orbit like a second moon, and this year, it made its final close approach of our planet. It is classified as a "minimoon," or temporary satellite. But it's no stray space rock — the object, known as 2020 SO, is a leftover fragment of a 1960s rocket booster from the American Surveyor moon missions. On Feb. 2, 2021, 2020 SO reached 58% of the way between Earth and the moon, roughly 140,000 miles (220,000 kilometers) from our planet. It was the minimoon's final approach, but not its closest trip to Earth. It achieved its shortest distance to our planet a few months prior, on Dec. 1, 2020. It has since drifted off into space and away from Earth's orbit, never to return. Parker Solar Probe travels through the sun's atmosphere This year, NASA's sun-kissing spacecraft swam within a structure that's only visible during total solar eclipses and was able to measure exactly where the star's "point of no return" is located. The Parker Solar Probe has been zooming through the inner solar system to make close approaches to the sun for the past three years, and it is designed to help scientists learn about what creates the solar wind, a sea of charged particles that flow out of the sun and can affect Earth in many ways. The spacecraft stepped into the sun's outer atmosphere, known as the corona , during its eight solar flyby. The April 28 maneuver supplied the data that confirmed the exact location of the Alfvén critical surface: the point where the solar wind flows away from the sun, never to return. The probe managed to get as low as 15 solar radii, or 8.1 million miles (13 million km) from the sun's surface. It was there that it passed through a huge structure called a pseudostreamer, which can be seen from Earth when the moon blocks the light from the sun's disk during a solar eclipse . In a statement about the discovery, NASA officials described that part of the trip as "flying into the eye of a storm." Perseverance begins studying rocks on Mars Last but not least, this year marked the arrival of NASA's Perseverance rover on Mars. The mission has been working hard to find traces of ancient Martian life since it reached the Red Planet on Feb. 18, 2021. Engineers have equipped Perseverance with powerful cameras to help the mission team decide what rocks are worth investigating. One of Perseverance's most charming findings has been "Harbor Seal Rock ," a curiously-shaped feature that was probably carved out by the Martian wind over many years. Perseverance has also obtained several rock samples this year, which will be collected by the space agency for analysis at some point in the future. Perseverance is taking its observations from the 28-mile-wide (45 kilometers) Jezero Crater, which was home to a river delta and a deep lake billions of years ago.

  • spacerium | SPACELIA

    OUR BLOGGING PAGE SPACERIUM

  • Age of our Universe | SPACELIA

    Age of our Universe Coming Soon.......

  • Trappist-1 System | SPACELIA

    Map of Trappist-1 star system Trappist-1 System Heliocentric system is a fully functional detail map of our solar system with sun and all planets and natural satellites of all planets, asteroids and comets also. we designed this map as natural and graphical and easy to understand our solar system at first time. Trappist-1 b c d e f g h

  • New Page | SPACELIA

    NEWS 2 items found If you want to know about any particular topic then you can search the name or keyword of any topic. If you are not getting results that satisfy your needs or are not getting any results regarding your topic, you can let us know by email or in AI chat.

  • Parallel World Travel | SPACELIA

    Parallel World Travel We have heard a lot about time travel, it feels good to hear it but only in imagination and theories, we already know the rest of the reality, but today we have brought another theory in front of you which can happen in the past. There is a thesis based on the above but yes, you will definitely feel happy after reading it. Over View.... So let me give you an overview of this theory, in this we have tried to understand how time travel can happen in the past, because we all know that if we want, we can do it in the future, but time can never shrink. This is why it is impossible to travel in the past, but if we say that it is possible and that anti-reaction will increase your interest, then if we have to travel in time then it is possible only in a parallel universe. But we cannot understand the parallel world well yet, so we will have to create this theory accordingly, then the time travel that will happen will happen in the parallel world that we have created with our own thoughts. Because till now the parallel universe has remained only a thesis. So stick to this theory and the whole society will follow you. If you have any questions, you can tell me in the chat box below, I will definitely answer you. Lets begin the journey After starting this I want to ask you question Is time travel in past can be possible because if we do there would be so many paradoxes we have to face like Grandfather paradoxes and Butterfly Effect. If you don’t know about these then might be you think that what’s these..? ​ Grandfather Paradox- Let’s suppose you have a time machine and you traveled in past And unfortunately because of You your Grandfather got killed in his childhood in the age of 6. Then what happen? Just think logically that if your Grandfather never married with any woman then your father will not birth in this world and if he don’t birth in this world You might be not birth in the world So in present if you don’t exists how did you traveled in past and killed your Grandfather? Tricky right… You can read About the Butterfly effect By yourself…. And cause of we are humans and we often made mistakes we can say that there will be a huge chance that we messed up past.. So with this, This is confirm that we cannot travel in past. Even not in the theory. But we are humans and we are free to think and assume don’t we? Of course many scientists claim that past time travel isn’t possible. So my theory is What if we do travel in past and change it but in result nothing will change in our world cause of our mistake or action, Note that I said in our world. As we know we are not alone in the universe there can be a lot of creature like us or advance from us or lower from us in different sector. And there would be a chance that there would be an parallel universe like us. Parallel Universe is a universe which had many similarities and many differences too. This is a hypothesis universe but it can be true. My theory is a mixture of parallel universe and time travel. There are huge chance that we humans will be able to travel in past but the problem will be we can only observe them but can’t change anything if we dare and try to change anything then The past that we traveled will become a parallel universe and continuous it’s own different future than us. In short if we do the grandfather paradox there then even if we kill the grandfather we will be secure but in that died grandfather universe we actually never be able to exists there. It might be the reason why the party of the time travelers by Stephen hawking was empty cause maybe the travelers don’t want to change the universe. With this almost every paradox can be solved. And whenever we felt Déjà vu there would be the cause of we already felt it on parallel universe and we are connected by that ourselves from that universe to this Universe.. Every action has an appropriate reaction We all know that every action has an appropriate reaction, so you must be thinking that you have said that time travel will happen in the past but not in our parallel universe, but will it have any impact in our universe? , Can it have any opposing impact? Well, we can think something now, but because we have given you this universe, it must have been created by imagination and if we do anything in it, we will not see any effect on the present. We will not get it, that is a different matter that this is just our thought, so maybe there can be some reaction. You can tell in the chat box given below whether you have any idea whether this could be a reaction? Chat Section If you have any question ask me here....

  • Hubble's Planetary Discoveries | SPACELIA

    Hubble's Planetary Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Watching the weather patterns on the giant outer planets (Jupiter, Saturn, Uranus, and Neptune) has been an ongoing activity throughout Hubble’s lifetime. Jupiter's monster storm, the Great Red Spot, was once so large that three Earths would fit inside it. But new measurements by Hubble reveal that the largest storm in our solar system has downsized significantly. The Red Spot, which has been raging for at least a hundred years, is now only the width of one Earth. The storm images were taken in 1995, 2009, and 2014. The images were taken with Wide Field and Planetary Camera 2 (1995) and Wide Field Camera 3. The large Wide Field Camera 2 image of Jupiter was obtained in 2007, with its moon, Ganymede, just emerging from behind the planet. The semi-major axis of Jupiter's orbit about the Sun is 5.2 astronomical units (483 million miles or 778 million km). The planet has a diameter of roughly 88,789 miles (142,984 km) at the equator. This image of Europa is derived from a global surface map generated from combined NASA Voyager and Galileo space probe observations. The graphic shows the location of water vapor detected over Europa's south pole by Hubble in December 2012. The Hubble observations provide the best evidence to date of water plumes erupting off Europa's surface. Hubble didn't photograph plumes, so the plume and the illustration in the center are artist’s conceptions. However, Hubble observers used the Space Telescope Imaging Spectrograph to spectroscopically detect auroral emissions from oxygen and hydrogen. The aurora is powered by Jupiter's magnetic field. This is only the second moon in the solar system found ejecting water vapor from the frigid surface. Another of Jupiter’s moons, Ganymede, is also likely to have a subsurface ocean. Europa is the sixth closest Jovian moon. It is the smallest of the four Jovian satellites discovered by Galileo Galilei, but still the sixth largest moon in the Solar System. Europa was discovered by Galileo in 1610. Images taken in ultraviolet light by Hubble’s Space Telescope Imaging Spectrograph (STIS) show both Jupiter auroras in 1998, the oval-shaped objects in the inset photos. Ground-based telescopes cannot view these phenomena in ultraviolet light, as it is blocked by the Earth’s atmosphere. Auroras are curtains of light resulting from high-energy electrons racing along the planet's magnetic field into the upper atmosphere. The electrons excite atmospheric gases, causing them to glow. The electric-blue image of Jupiter’s northern aurora shows the main oval of the aurora, which is centered on the magnetic north pole, plus more diffuse emissions inside the polar cap. Though the aurora resembles the same phenomenon that crowns Earth's polar regions, the blue Hubble image shows unique emissions from the magnetic "footprints" of three of Jupiter's largest moons. (These points are reached by following Jupiter's magnetic field from each satellite down to the planet). Jupiter has at least 68 moons. Auroral footprints can be seen in this image from Io (along the left-hand limb), Ganymede (near the center), and Europa (just below and to the right of Ganymede's auroral footprint). These emissions, produced by electric currents generated by the satellites, flow along Jupiter's magnetic field, bouncing in and out of the upper atmosphere. They are unlike anything seen on Earth. This ultraviolet image of Jupiter was taken with the Hubble Space Telescope Imaging Spectrograph (STIS) on November 26, 1998. In this ultraviolet view, the aurora stands out clearly, but Jupiter's cloud structure is masked by haze. Saturn’s aurora was observed with Hubble in 2005. Images were obtained with the Advanced Camera for Surveys in the optical and STIS in the ultraviolet. The aurora appeared in Saturn’s southern polar region for several days. Hubble snapped a series of photographs of the aurora dancing in the sky. The snapshots show that Saturn's auroras differ in character from day to day -- as they do on Earth -- moving around on some days and remaining stationary on others. But compared with Earth, where auroral storms develop in about 10 minutes and may last for a few hours, Saturn's auroral displays always appear bright and may last for several days. Recently, NASA’s New Horizons mission imaged Pluto and two of its moons, Nix and Hydra, which were discovered by Hubble in 2005. Peering out to the dim, outer reaches of our solar system beyond Pluto, Hubble uncovered three Kuiper Belt objects (KBOs) that the agency's New Horizons spacecraft could potentially visit after it flies by Pluto in July 2015. The KBOs were detected through a dedicated Hubble observing program by a New Horizons search team that was awarded telescope time for this purpose. The lower set of Pluto images shows Hubble Space Telescope data from the Advanced Camera for Surveys exhibiting an icy, mottled, dark molasses-colored world undergoing seasonal surface color and brightness changes. Pluto has become significantly redder, while its illuminated northern hemisphere is getting brighter. These changes are most likely consequences of surface ice melting on the sunlit pole and then refreezing on the other pole, as the dwarf planet heads into the next phase of its 248-year-long seasonal cycle. Analysis shows the dramatic change in color took place from 2000 to 2002. Note that Hubble found four of Pluto’s five moons – Nix, Hydra, Styx and Kerberos. http://hubblesite.org/newscenter/archive/releases/2014/47/full/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2010/06/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2012/32/ and related links http://www.nasa.gov/nh_new-horizons-spots-small-moons-orbiting-pluto/#.VPnlP2TF_b4 http://pluto.jhuapl.edu/ ​ Other outer solar system objects: Eris is 1.27 times the mass of Pluto, and formerly the largest member of the Kuiper Belt of icy objects beyond Neptune. Hubble observations in 2006 showed that Eris is slightly physically larger than Pluto. But the mass could only be calculated by observing the orbital motion of the moon Dysnomia around Eris. Multiple images of Dysnomia's movement along its orbit were taken by Hubble and Keck. ​ http://hubblesite.org/newscenter/archive/releases/solar%20system/2007/24/image/c/format/web/ Also in 2002, Hubble measured a large object discovered in the outer solar system. It was the largest outer solar system object discovered since Pluto and was superseded by the observation of Eris. Approximately half the size of Pluto, the icy world is called "Quaoar" (pronounced kwa-whar). Quaoar is about 4 billion miles away, more than a billion miles farther than Pluto. Like Pluto, Quaoar dwells in the Kuiper belt, an icy belt of comet-like bodies extending 7 billion miles beyond Neptune's orbit. http://hubblesite.org/newscenter/archive/releases/2002/17/ The upper image, taken by Hubble, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit around its parent star, Fomalhaut. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere. The black circle at the center of the image is caused by a device called a coronograph, which blocks out the otherwise overwhelming light from the bright star and allows reflected light from the belt and planet to be photographed. The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012. Fomalhaut is 25 light years (8 parsecs) away. ​ http://hubblesite.org/newscenter/archive/releases/2013/01/ The lower graphic demonstrates Hubble’s first detection ever of an organic molecule in the atmosphere of a Jupiter-sized planet orbiting another star. This breakthrough is an important step toward eventually identifying signs of life on a planet outside our solar system. The molecule found by Hubble is methane, which under the right circumstances can play a key role in prebiotic chemistry — the chemical reactions considered necessary to form life as we know it. The graphic shows a spectrum of methane with the configuration of the star and the planet (not to scale) in relation to Hubble. The object is 63 light years (19 parsecs) away. http://hubblesite.org/newscenter/archive/releases/2008/11/

  • Site Map | SPACELIA

    Site Map overview of site Solar System Sun Hit me for more information Mercury Hit me for more information Venus Hit me for more information Earth Hit me for more information Moon Hit me for more information Mars Hit me for more information Ceres Hit me for more information Asteroid Belt Hit me for more information Jupiter Hit me for more information Saturn Hit me for more information Comets Hit me for more information Uranus Hit me for more information Neptune Hit me for more information Kuiper Belt Hit me for more information Pluto Hit me for more information Oort Cloud Hit me for more information Research Star Formation Hit me for more information Nebula Observation Hit me for more information Solar Flare Detection Hit me for more information The Big Bang Effect Hit me for more information Existence of Alien civilization Hit me for more information Antient Literature & Geography Hit me for more information We are living in matrix Hit me for more information Net mass of our universe Hit me for more information Time Dilation Effect Hit me for more information Nearest Star System Hit me for more information KEPLER-452b Hit me for more information KEPLER-186f Hit me for more information Proxima Centauri b Hit me for more information Trappist-1 Hit me for more information LHS 1140b Hit me for more information Black Hole Hit me for more information Worm Hole Hit me for more information Age of our Universe Hit me for more information Religious Point of view Hit me for more information Existence of Multiverse Hit me for more information White Hole Hit me for more information Theories Time is not constant Hit me for more information Origin Of Earth Hit me for more information The Big Bang Theory Hit me for more information General Relativity Theory Hit me for more information Heat Death of the Universe Hit me for more information Multiness of Thoughts Hit me for more information Quantum Theory Hit me for more information Hubble's Law Hit me for more information Cosmic Inflaction Hit me for more information String Theory Hit me for more information Dark Metter Theory Hit me for more information Dark Energy Hit me for more information Multiverse Theory Hit me for more information Tagmark's Four Levels of Multiverse Hit me for more information Apple In a Box Hit me for more information Simulation Theory Hit me for more information Special Relativity Theory Hit me for more information Twin Paradox Hit me for more information Quantum Entanglement Hit me for more information The Infinite Hotel Paradox Hit me for more information The Rare Earth Hit me for more information The Great Silence Hit me for more information The Great Filter Hit me for more information The Early Bird Hit me for more information Theory of Creati Hit me for more information The Grandfather Paradox Hit me for more information We are nothing.... Hit me for more information Today Onward Theory Hit me for more information Chess Square Theory Hit me for more information We Are Our GOD Hit me for more information The Femi Paradox Hit me for more information String Theory Hit me for more information Space Facts The Great Attractor Hit me for more information Age of Water Hit me for more information Gliese 436 B Hit me for more information The oldest planet Hit me for more information GJ 1214B Hit me for more information HD 140283 Hit me for more information Deja Vu effect Hit me for more information Milky way galaxy Hit me for more information Speed of Light Hit me for more information Travel at speed of light Hit me for more information Speed of Light 2 Hit me for more information Time Dilation Hit me for more information Epsilon Eridani Star System Hit me for more information Strange Planets Hit me for more information Space Facts-1 Hit me for more information PSR J1719 1438B Hit me for more information Center of Mass Hit me for more information Center of Mass Hit me for more information What is Time? Hit me for more information Why we should not make contact with aliens right now Hit me for more information Quantum Elevator Hit me for more information Bennu Asteroid Hit me for more information Voyagers Golden Record Hit me for more information WARP Drive Hit me for more information Psyche Asteroid Hit me for more information Earendel Star Hit me for more information Articles STAR VFTS102 Hit me for more information Dark Energy Hit me for more information Multiness of Thoughts Hit me for more information Zombie Planets Hit me for more information The Dream Mission Hit me for more information Creation of Mind Loop Hit me for more information Osiris-REx Mission Hit me for more information Chandra X-Ray Observatory Hit me for more information Aditya L-1 - Exploration of SUN Hit me for more information Discoveries Hubble's Discoveries Hit me for more information Hubble's Deep Field Hit me for more information Hubble's Star Clusters Hit me for more information Hubble's Nebulae Hit me for more information Hubble's Galaxies Hit me for more information Hubble's Galaxy Discovery Hit me for more information Hubble's Nebula Discovery Hit me for more information Hubble's Planetary Discovery Hit me for more information Kepler Telescope Hit me for more information Nasa's Time Line Hit me for more information Space Discoveries of 2019 Hit me for more information Space Discoveries of 2021 Hit me for more information

  • Hubble's Discoveries | SPACELIA

    Hubble's Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Presenter please note: Much of the discussion in these slides, and most of the public’s attention, is focused on Hubble’s enormous repertoire of images. Here is a montage of some of Hubble’s best images that symbolize the breadth and depth of Hubble observations and the research being done. ​ In each image that follows, a timeline (shown here) will be shown so that viewers have an appreciation for how far away the object is and how long it takes for the light to travel to Hubble from that object.

  • Forum | SPACELIA

    Para ver esto en acción, dirígete a tu sitio ya publicado. Todas las entradas Categorías Mis entradas Inicia sesión/ Regístrate Forum Welcome! Have a look around and join the discussions. Ordenar según: Actividad reciente Seguir todas las categorías Create New Post Aagam sanghavi Welcome to the Forum en General Discussion Share your thoughts. Feel free to add GIFs, videos, hashtags and more to your posts and comments. Get started by commenting below. 0 comentarios 0 08 nov 2023 Me gusta 0 comentarios Comentar Aagam sanghavi Forum rules en General Discussion We want everyone to get the most out of this community, so we ask that you please read and follow these guidelines: • Respect each other • Keep posts relevant to the forum topic • No spamming 0 comentarios 0 08 nov 2023 Me gusta 0 comentarios Comentar Aagam sanghavi Introduce yourself en General Discussion We'd love to get to know you better. Take a moment to say hi to the community in the comments. 0 comentarios 0 08 nov 2023 Me gusta 0 comentarios Comentar Forum - Frameless

  • KEPLER-186f | SPACELIA

    KEPLER-186f Kepler-186f is an Earth-sized exoplanet located 500 light-years away in the constellation Cygnus. It orbits a red dwarf star, Kepler-186, within its habitable zone, where conditions might allow liquid water to exist. This discovery sparked interest in the search for potentially habitable exoplanets and raised questions about the possibility of extraterrestrial life beyond our solar system. However, limited data about its atmosphere and surface make it challenging to assess its true habitability. 1. Characteristics of Kepler-186f: Size: Kepler-186f is considered an Earth-sized exoplanet, with an estimated radius about 1.1 times that of Earth. This makes it one of the few exoplanets discovered at the time that was close in size to our own planet. Parent Star: Kepler-186f orbits a red dwarf star known as Kepler-186, which is cooler and smaller than our Sun. Kepler-186 is classified as an M-dwarf star. Orbit: Kepler-186f is in a relatively tight orbit around its host star, completing one orbit approximately every 130 Earth days. It receives about a third of the energy from its star compared to Earth's energy from the Sun. Habitable Zone: One of the most intriguing aspects of Kepler-186f is its location within the habitable zone (Goldilocks zone) of its star. The habitable zone is the region around a star where conditions might be suitable for liquid water to exist on the planet's surface, which is a key factor for the potential development of life as we know it. 2. Atmosphere of Kepler-186f: Information about the specific composition and characteristics of Kepler-186f's atmosphere is not currently known. Detecting and analyzing the atmospheres of exoplanets, especially those as distant as Kepler-186f, is a challenging task that often requires advanced telescopes and instruments. Detailed studies of an exoplanet's atmosphere can provide important insights into its potential habitability. 3. Potential for Extraterrestrial Life: Kepler-186f's location within the habitable zone of its star makes it an intriguing candidate for the potential existence of extraterrestrial life. The habitable zone represents the region where conditions might be right for liquid water to exist on the planet's surface, which is a crucial ingredient for life as we know it. However, the presence of liquid water alone does not guarantee the existence of life. Other factors, such as the composition of the planet's atmosphere, the presence of essential nutrients, geological activity, and the stability of the climate, also play vital roles in determining habitability. Detecting signs of life on Kepler-186f or any exoplanet is extremely challenging and would likely require advanced telescopes capable of analyzing the planet's atmosphere for biomarkers (e.g., oxygen, methane) or other potential signs of biological activity. Kepler-186f and Earth have some similarities, such as their Earth-sized classification and the fact that Kepler-186f is located within the habitable zone of its star. However, they also have several key differences. Here's a comparison between Kepler-186f and Earth: ​ 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms. Kepler-186f: Kepler-186f is considered an Earth-sized exoplanet, with an estimated radius about 1.1 times that of Earth. Its exact mass is not precisely known but is believed to be greater than Earth. ​ 2. Parent Star and Orbit: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). It completes one orbit around the Sun in approximately 365.25 days. Kepler-186f: Kepler-186f orbits a red dwarf star known as Kepler-186, which is cooler and smaller than our Sun. Its orbit around Kepler-186 takes approximately 130 Earth days. ​ 3. Habitable Zone: Earth: Earth is located within the habitable zone of the Sun, where conditions for liquid water are ideal for the existence of life. Kepler-186f: Kepler-186f is also located within the habitable zone of its star, Kepler-186. This means that, theoretically, it could have conditions suitable for liquid water to exist on its surface. ​ 4. Atmosphere: Earth: Earth has a diverse and life-sustaining atmosphere composed primarily of nitrogen (about 78%) and oxygen (about 21%), with trace amounts of other gases. The atmosphere plays a critical role in regulating temperature and supporting life. Kepler-186f: The specific composition and characteristics of Kepler-186f's atmosphere are not currently known. Detailed studies are needed to determine the presence and properties of its atmosphere. ​ 5. Surface Conditions: Earth: Earth has a variety of surface conditions, including continents, oceans, and various climate zones. It supports a wide range of life forms and ecosystems. Kepler-186f: The specific surface conditions of Kepler-186f, such as the presence of oceans, continents, or any geological activity, are not known due to limited observational data. ​ 6. Potential for Extraterrestrial Life: Earth: Earth is known to host a diverse array of life, from microorganisms to complex multicellular organisms, including humans. Kepler-186f: While it is located within the habitable zone and is considered an interesting candidate for further study, the presence of extraterrestrial life on Kepler-186f is purely speculative at this point. It is one of the exoplanets that has garnered attention for its potential habitability. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1

  • Articles | SPACELIA

    Research Papers Articles STAR VFTS102 We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s−1 and probably as large as 600 km s−1; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s−1 from the mean for 30 Doradus, suggesting that it is a runaway. View More Dark Energy In the late 1990s, astronomers found evidence that the expansion of the universe was not slowing down due to gravity as expected. Instead, the expansion speed was increasing. Something had to be powering this accelerating universe and, in part due to its unknown nature, this “something” was called dark energy. View More Zombie Planet Zombie planets, also known as "pulsar planets" or "planets around pulsars," are a fascinating and relatively rare astronomical phenomenon. View More The Dream Mission People must have had many dreams and those dreams would be very unique, but my dream is very unique. Today I will share with you this dream journey full of very interesting and adventures. In this dream of mine, I have done the complete mission of Mars and there are many twists in that too, which I will tell you further in this article. The article is The Dream Mission View More Creation of Mind Loop What we doing, what we experiencing, what we thinking is a creation of mind, and it's just a thoughts View More

  • Trappist-1 | SPACELIA

    TRAPPIST-1 TRAPPIST-1 is a star system located about 39 light-years away from Earth in the constellation Aquarius. It gained significant attention and interest in the scientific community and the public due to the discovery of seven Earth-sized exoplanets orbiting the ultra-cool dwarf star TRAPPIST-1. Here's a detailed explanation of the TRAPPIST-1 system, including information about its characteristics, the potential for atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of TRAPPIST-1: Star Type: TRAPPIST-1 is an ultra-cool dwarf star classified as an M8V-type star. It is much cooler and smaller than our Sun, with a surface temperature of about 2,550 degrees Celsius (4,622 degrees Fahrenheit). Number of Exoplanets: The TRAPPIST-1 system is known to host seven exoplanets. These exoplanets are designated as TRAPPIST-1b, c, d, e, f, g, and h. They were discovered through the transit method, which involves observing the periodic dimming of the star's light as the planets pass in front of it. Habitability Zone: Several of the exoplanets in the TRAPPIST-1 system are located within the habitable zone, also known as the Goldilocks zone. This is the region around a star where conditions might be suitable for liquid water to exist on the planets' surfaces, a key factor for potential habitability. 2. Atmosphere of TRAPPIST-1 Exoplanets: Information about the specific composition and characteristics of the atmospheres of the TRAPPIST-1 exoplanets is not fully known. Detecting and characterizing exoplanet atmospheres is a challenging task that requires advanced telescopes and instruments. Astronomers have conducted studies to analyze the potential atmospheres of these exoplanets. The presence of atmospheres would be an essential factor in determining their habitability and potential for hosting life. 3. The Search for Extraterrestrial Life or Aliens: The discovery of seven Earth-sized exoplanets in the TRAPPIST-1 system, especially those within the habitable zone, has made TRAPPIST-1 a significant target in the search for extraterrestrial life. The habitable zone is a region where conditions might be right for liquid water to exist, a key ingredient for life as we know it. The search for extraterrestrial life involves looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. It also involves the study of planetary conditions, including surface temperature and radiation levels, to assess the potential for life to thrive. While the discovery of the TRAPPIST-1 exoplanets is exciting, the actual presence of extraterrestrial life remains purely speculative. The search for life beyond Earth is an ongoing scientific endeavor, and it requires more advanced technology and instruments, including next-generation telescopes like the James Webb Space Telescope, to provide more insights. 4. The Possibility of Aliens: The term "aliens" typically refers to intelligent extraterrestrial beings. While the search for microbial life or even simple life forms is a primary focus in astrobiology, the search for intelligent civilizations, often referred to as the search for extraterrestrial intelligence (SETI), remains an active area of research. SETI involves listening for radio signals or other types of communication from advanced civilizations in the universe. So far, no definitive evidence of extraterrestrial intelligent life or aliens has been found. Comparison with Solar System The TRAPPIST-1 system and our solar system are two different planetary systems in the Milky Way galaxy. While both contain multiple celestial bodies, there are significant differences between them. Here's a comparison of the TRAPPIST-1 system and our solar system: Number of Stars: Solar System: Our solar system is a single-star system, with the Sun as the central star. TRAPPIST-1 System: The TRAPPIST-1 system is a multi-star system, consisting of a red dwarf star called TRAPPIST-1 and at least seven confirmed planets orbiting it. Central Star: Solar System: The Sun is a G-type main-sequence star (a yellow dwarf). TRAPPIST-1 System: TRAPPIST-1 is an M-type dwarf star, which is much cooler and less massive than the Sun. Planetary Orbits: Solar System: In the solar system, planets have relatively stable, nearly circular orbits. TRAPPIST-1 System: The TRAPPIST-1 planets have much closer orbits to their star, with some being in the habitable zone. These orbits are closer to their star compared to most planets in our solar system. Planetary Composition: Solar System: The planets in our solar system have diverse compositions. The inner planets (Mercury, Venus, Earth, and Mars) are rocky, while the outer planets (Jupiter, Saturn, Uranus, and Neptune) are gas giants or ice giants. TRAPPIST-1 System: The TRAPPIST-1 planets are believed to be rocky, similar to the inner planets in our solar system. Some may have liquid water on their surfaces. Habitability: Solar System: Earth, in our solar system, is the only known planet with conditions suitable for life as we know it. TRAPPIST-1 System: Some of the TRAPPIST-1 planets are in the habitable zone, where liquid water could exist. This makes them potential candidates for studying the possibility of life beyond Earth. Number of Planets: Solar System: Our solar system has eight recognized planets, with Pluto being classified as a dwarf planet. TRAPPIST-1 System: At least seven planets have been discovered in the TRAPPIST-1 system. Planetary Sizes: Solar System: The planets in our solar system vary in size from small rocky planets like Mercury to massive gas giants like Jupiter. TRAPPIST-1 System: The TRAPPIST-1 planets are thought to be similar in size to Earth and its neighboring planets. Exploration: Solar System: Our solar system has been extensively explored by spacecraft, including missions to all eight recognized planets, numerous moons, and even a few asteroids and comets. TRAPPIST-1 System: As of my knowledge cutoff date in September 2021, the TRAPPIST-1 system had been observed and studied from a distance through telescopes, but no direct spacecraft missions had been sent to explore it. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b KEPLER-186f Proxima Centauri b

  • Missions | SPACELIA

    MISSIONS Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More

  • Hubble's Deep Field | SPACELIA

    Hubble's Deep Field The Hubble Space Telescope has made over 1.5 million observations since its launch in 1990, capturing stunning subjects such as the Eagle Nebula and producing data that has been featured in almost 18,000 scientific articles. But no image has revolutionized the way we understand the universe as much as the Hubble Deep Field . A Core Sample of the Universe ​ The Hubble Deep Field image holds 342 separate exposures taken between December 18 and 28, 1995. The picture we see was assembled from blue, red, and infrared light. The combination of these images allows astronomers to infer the distance, age, and composition of the galaxies photographed. Bluer objects, for example, contain young stars or could be relatively close. Redder objects contain older stars or could be farther away. Most of the galaxies are so faint ― four billion times fainter than the human eye can see ― that they had never been observed before, even by the largest telescopes. “As the images have come up on our screens, we have not been able to keep from wondering if we might somehow be seeing our own origins in all of this,” Williams said at the time. “These past 10 days have been an unbelievable experience.” The “deep” in Hubble Deep Field refers to the telescope’s ability to look at some of these far, faint objects. Looking at far-away objects in space is like seeing back in time. Light moves at tremendous speed, but it still takes time to travel across the vastness of space. Even the light from our own Sun needs eight minutes and 20 seconds to reach Earth, so when we look at the Sun, we see it as it was a little more than eight minutes earlier. The farther away the object, the younger it appears in Hubble’s gaze. The Deep Field was like a core sample of space, showing galaxies at different and earlier stages of development the deeper they appeared in the image. Researchers from the State University of New York at Stony Brook analyzed the photo and chose several dozen candidates that could be more distant than any galaxies seen up to that point. They identified the galaxies based on their color, because more distant galaxies appear redder as the light reaches us. This happens because the light stretches as it travels through the universe, transforming into infrared wavelengths, which are redder. A 1998 follow-up infrared image taken with Hubble’s Near Infrared Camera and Multi-Object Spectrometer discovered galaxies believed to be over 12 billion light-years away, even farther than those seen in the Hubble Deep Field. Hubble Deep Field South After the success of the original Hubble Deep Field, astronomers sought new ways to increase our understanding of the universe. Since it would take 900,000 years for astronomers to observe the whole sky, they knew they would have to rely on more samples like the Hubble Deep Field to infer what the entire universe looks like. The Hubble Deep Field South focused on a region in the constellation Tucana, near the south celestial pole, and doubled the number of distant galaxies available to astronomers. Williams and a team of 50 astronomers and technicians at the Institute and at Goddard Space Flight Center in Greenbelt, Maryland, carried out the 10-day-long observation in October 1998. Hubble Ultra Deep Field ​ In 2004, Hubble captured a million-second-long exposure that contained 10,000 galaxies. This new image, the Hubble Ultra Deep Field, observed the first galaxies to emerge from the “dark ages,” a time just after the Big Bang. A servicing mission in 2002 had installed a new camera, called the Advanced Camera for Surveys. That camera had twice the field of view and a higher sensitivity than WFPC2, the camera that captured the original Deep Field. The final Ultra Deep Field photo is actually combined from an ACS image and an image from Hubble’s Near-Infrared Camera and Multi-object Spectrometer. “Hubble takes us to within a stone’s throw of the Big Bang itself,” said Massimo Stiavelli, an instrument scientist for Hubble at the Space Telescope Science Institute. From ground-based telescopes, the location of the Ultra Deep Field in the constellation Fornax ― right below the constellation Orion ― looked mostly empty, much like the other Deep Field locations, allowing for more distant observations to take place. The Ultra Deep Field image contained several odd galaxies, such as one shaped like a toothpick and another shaped like a bracelet link. Such galaxies come from a more chaotic time before the development of structured galaxies like the Milky Way. Ultra Deep Field data also taught astronomers that black holes at the center of galaxies likely grew over time, that large galaxies build up gradually as others merge and collide, and that some of the earliest galaxies were much smaller than our current Milky Way. Hubble Ultra Deep Field-Infrared ​ In 2009, Hubble captured near-infrared light wavelengths in the same region as the Ultra Deep Field, revealing galaxies formed just 600 million years after the Big Bang. The light from one object, called UDFj-39546284, traveled 13.2 billion light-years to reach Earth. It’s a compact galaxy made up of blue stars, and astronomers found that the rate of star formation grew by a factor of 10 in just over 200 million years ― that may sound like a long time to us, but it’s tiny for the universe. ​ ​ ​ Hubble eXtreme Deep Field In 2012, Hubble took it to the extreme. Astronomers combined 10 years of photographs taken of a region in the center of the original Ultra Deep Field. Even with its smaller view, the eXtreme Deep Field still showed 5,500 galaxies. The faintest galaxies visible in this image are one ten-billionth of what the human eye can see, and most of the galaxies shown are from when they were young and small, often colliding and merging together. ​ ​ ​ Ultra Deep Field 2012 After observations made over six weeks in August and September 2012, a team of astronomers discovered a population of seven primitive galaxies formed when the universe was just 3% of its present age. The observations supported the idea that galaxies may have provided enough energy to reheat the universe after the Big Bang. ​ ​ ​ Frontier Fields NASA’s Great Observatories ― Hubble, Spitzer, and Chandra ― teamed up in 2013 for the Frontier Fields, a bold multi-year campaign to provide critical data to aid investigations of dark matter and how galaxies change over time, among others. Abell 370 is a cluster with several hundred galaxies at its core. It was one of the first clusters where astronomers observed gravitational lensing and part of the Frontier Fields project. Credits: NASA, ESA, R. Bouwens and G. Illingworth (University of California, Santa Cruz) The campaign provided 12 new deep field images, and astronomers were able to detect galaxies 100 times fainter than those they observed in the Hubble Ultra Deep Field. Focusing on high-redshift galaxies and gravitational lensing, or the natural distortion of light from massive galaxy clusters, the team worked to detect galaxies too faint to be seen by Hubble alone. Such an undertaking propelled our understanding of the universe in ways that could only be achieved with all the Great Observatories working together. The campaign ended in 2017, and now astronomers can use the dataset to continue exploring the early universe. Not only did the Hubble Deep Field change how we understand the universe, it also changed how we share findings. “This coming together of the community to generate a shared, nonproprietary dataset was essentially unprecedented but has since become the model for the majority of large astronomical projects,” wrote University of Washington astronomer Julianne Dalcanton. “This new mode of operating has democratized astronomy.” Hubble’s data was compiled for the Legacy Field, a combination of nearly 7,500 Hubble exposures. It represents 16 years of observations, 265,000 galaxies, and 13.3 billion years, making it the largest collection of galaxies documented by Hubble. The role of exploring the early universe further will fall to the James Webb Space Telescope , expected to launch in late 2021. Designed to see even farther back than Hubble because of its powerful infrared vision, Webb promises exciting observations and new discoveries. But our evolving understanding began with Hubble, and a team not afraid to explore what looked like nothing.

  • Hubble's Galaxies | SPACELIA

    Hubble's Galaxies Our Sun is just one of a vast number of stars within a galaxy called the Milky Way, which in turn is only one of the billions of galaxies in our universe. These massive cosmic neighborhoods, made up of stars, dust, and gas held together by gravity, come in a variety of sizes, from dwarf galaxies containing as few as 100 million stars to giant galaxies of more than a trillion stars. Spiral Galaxies Spiral galaxies have winding spiral arms that make them look a little like massive pinwheels. These disks of stars, gas, and dust have bright bulges in their centers made up primarily of older and dimmer stars. Their whirled arms are typically full of gas and dust, which helps give rise to the bright, younger stars visible throughout their length. Spiral galaxies are actively forming stars and make up a large amount of all the galaxies in our nearby universe. Spiral galaxies can be further divided into two groups: normal spirals and barred spirals. In barred spirals, a bar of stars runs through the central bulge of the galaxy. The arms of barred spirals usually start at the end of the bar instead of the bulge. Our Milky Way is thought to be a barred spiral galaxy. ​ Elliptical Galaxies Elliptical galaxies are the biggest and most common galaxies in our universe. The shapes of these galaxies range from circular to very elongated. Galaxies are thought to form and grow by collisions and mergers, and elliptical galaxies may be the ultimate result of this process, which explains why they are so abundant. Compared to other types of galaxies, elliptical galaxies have smaller portions of gas and dust, contain older stars, and don’t form many new stars. The largest and rarest of these galaxies – known as giant ellipticals – are about 300,000 light-years across. More commonly spotted are dwarf ellipticals, which in comparison are only a few thousand light-years wide. ​ ​ Irregular Galaxies Irregular galaxies don’t contain much dust, and lack a defined shape. Astronomers often see irregular galaxies as they peer deeply into the universe. These galaxies are abundant in the early universe, in the era before spirals and ellipticals developed. As irregular galaxies collide and merge with other galaxies throughout time, they are thought to develop structure and become the spiral and elliptical galaxies we see in today’s universe. In addition to these three big categories, astronomers have also observed many unusually shaped galaxies that appear to be in a transitory or “in-between” phase of galactic evolution, including galaxies that are colliding or interacting with each other , pulled together by gravity. Hubble's Galaxy Gallery

  • Inflationary Cosmology | SPACELIA

    Inflationary Cosmology Theory Concept...... Inflationary cosmology is a theoretical framework in physical cosmology that proposes a rapid exponential expansion of space in the early universe. It was first proposed by physicist Alan Guth in 1980 to address several puzzles in the standard Big Bang cosmology, such as the horizon problem, the flatness problem, and the origin of structure in the universe. ​ The key idea behind inflation is that the universe underwent a brief period of extremely rapid expansion, driven by a hypothetical scalar field called the inflaton. During this inflationary epoch, the universe expanded exponentially, stretching quantum fluctuations to macroscopic scales and smoothing out the curvature and density of space. This expansion also effectively "ironed out" any irregularities in the early universe, explaining the uniformity of the cosmic microwave background radiation observed today. ​ Inflationary cosmology has been supported by a variety of observational data, including measurements of the cosmic microwave background radiation by satellites like the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck satellite. These measurements have provided strong evidence for the predictions of inflation, such as the nearly scale-invariant spectrum of primordial density fluctuations. ​ Despite its success in addressing many cosmological puzzles, inflationary cosmology is still a subject of active research and debate. There are various models of inflation, each with its own predictions and implications for the universe's early history. Additionally, there are ongoing efforts to test inflationary predictions through observations of the cosmic microwave background, gravitational waves, and large-scale structure in the universe. ​ Some challenges and open questions remain within the framework of inflationary cosmology, including the initial conditions problem (i.e., explaining how inflation started and why the inflaton field had the necessary properties), the reheating mechanism (i.e., how the energy stored in the inflaton field was converted into ordinary matter and radiation), and the so-called "multiverse" implications (i.e., the idea that inflation can lead to the creation of multiple universes with different properties). ​ Overall, inflationary cosmology has had a profound impact on our understanding of the early universe and continues to shape theoretical research in cosmology and particle physics. Chat Section If you have any question ask me here.... Other Articles...... Theories Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop Today Onward Theory Parallel World Travel We are our GOD STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1

  • Theories | SPACELIA

    Theories Scientific explanation of any topic Time Is Not Constant only one thing is constant and it is a change. okay for some reason i thought time is constant so when something is come from nothing so nothing is consist nothing not time also. so yes the question is when vacume is consist nothing so time is not constant. but here is a Einstein's Relativity theory is proved wrong as per this perspactive but no everything is right in it's limits. Origin Of Earth Origin of our universe is from big bang effect. and origin of our galaxy is to collab of two galaxies, but origin of our earth is ? , origin of our earth is from sun because age of our galaxy is roughly 13.6 billion years and age of our sun is 4.6 billion years and age of our earth is 4.5 billion years, so the origin of our earth is from sun as per my perspective. exploit on suns surface core is a origin of all planets and asteroids, exploit of sun and other rock is origin of our moon. so this is my basic phenomena. The BIg-Bang Theory The early theory of origin of origin of universe is The Big Bang Theory. which consist a nebular exploidation of two nebulas. this theory is a strongest theory of the origin of universe. when big bang cause dark mater and all galaxies are origin. all things of our universe is cause in this time. scientist strongly work on this theory. Georges Lemaitre || 1894 - 1966 General Relativity Theory The theory of relativity is a scientific theory proposed by Albert Einstein in 1905 and 1915 that fundamentally changed our understanding of space, time, and gravity. It has two main parts: Special relativity: which deals with objects moving at constant speeds, and shows that time is relative to the observer and that objects appear differently depending on the observer's position and motion. General relativity: which deals with the force of gravity and shows that it is not a force at all, but rather the curvature of spacetime caused by the presence of mass and energy. Albert Einstein || 1905 Heat Death Of The Universe The heat death of the universe theory proposes that, over an immense span of time, the universe will gradually reach a state of maximum entropy and energy equilibrium. As the universe expands, the average energy density decreases, leading to a cooling effect. Eventually, all usable energy will be uniformly distributed and no longer available for work or sustaining life. This scenario predicts the loss of structure, complexity, and organization as energy dissipates, resulting in a cold, sparse, and lifeless universe. Lord Kelvin || 1850 Multiness Of Thoughts What we are experiencing right now, whether we have a dream or a thought represents our future, it means that what we think will happen to us, so always keep positive thinking. You may have seen the movie Interstellar where a man controls the fourth diamentio from the future and how our present is connected to our past, this basic concept is what I call the concept of Multiness of Thoughts. this concept is also connected with quantum theories, because this theory also say that all thigs which we see is create with our thoughts and after we see it's die immediately. Quantum Theory Quantum theory, also known as quantum mechanics, is a foundational theory in physics that describes the behavior of particles at the smallest scales. It introduces the concept of quantized energy levels, probabilistic behavior, and the wave-particle duality. Quantum theory revolutionized our understanding of the microscopic world, providing a mathematical framework to calculate probabilities and predict particle interactions. Its applications range from explaining the behavior of atoms and molecules to enabling technologies like quantum computing and quantum cryptography. Quantum theory has fundamentally transformed our understanding of the nature of reality and continues to shape our exploration of the fundamental workings of the universe. Niels Bohr & Max Planck || 1900 Hubble's Law Hubble's Law, named after the astronomer Edwin Hubble, states that galaxies are moving away from us, and the farther they are, the faster they are receding. This law is based on the observation that the light from distant galaxies is shifted towards the red end of the electromagnetic spectrum, known as redshift. Hubble's Law provides evidence for the expansion of the universe and serves as a cornerstone of modern cosmology. By studying the redshift of galaxies, scientists can determine their distance and calculate the rate of cosmic expansion. Hubble's Law has contributed significantly to our understanding of the origin, evolution, and large-scale structure of the universe. Edwin Hubble's || 1929 Cosmic Inflation Cosmic inflation theory proposes that the universe underwent an extremely rapid expansion, known as cosmic inflation, in the earliest moments of its existence. This theory suggests that, shortly after the Big Bang, a tiny patch of space expanded exponentially, causing the universe to rapidly expand and flatten out. Cosmic inflation helps explain several observations, such as the uniformity of the cosmic microwave background radiation and the overall large-scale structure of the universe. It also provides a possible solution to the horizon problem and the flatness problem in cosmology. While cosmic inflation remains a theoretical concept, it has gained widespread acceptance and is considered a crucial component of our current understanding of the early universe. Alan Guth || 1980 String Theory String theory is a theoretical framework in physics that aims to unify all the fundamental forces and particles of nature. It proposes that the fundamental building blocks of the universe are not point-like particles but tiny, vibrating strings of energy. These strings exist in higher-dimensional spacetime and their vibrations give rise to different particles with various properties. String theory offers a promising path towards reconciling general relativity and quantum mechanics, two foundational theories that currently appear incompatible. It also suggests the existence of additional dimensions beyond the familiar three spatial dimensions and one time dimension. String theory is still an area of active research and has sparked numerous developments in theoretical physics, including the concept of holography and new insights into quantum gravity and black hole physics. Gabriele Veneziano || 1969 Dark Matter Theory Dark matter theory proposes the existence of a type of matter that does not interact with light or other forms of electromagnetic radiation but exerts a gravitational influence on visible matter. It is called "dark" because it does not emit, absorb, or reflect light, making it invisible and difficult to detect directly. Dark matter is inferred from its gravitational effects on galaxies and galaxy clusters, explaining the observed rotation curves of galaxies and the dynamics of galactic clusters. The exact nature of dark matter remains unknown, and its composition is a subject of ongoing research. The existence of dark matter is a crucial component in current cosmological models, accounting for a significant portion of the mass in the universe and shaping the large-scale structure we observe. Fritz Zwicky || 1933 Dark Energy Theory Dark energy theory is a concept in physics that attempts to explain the observed accelerated expansion of the universe. It suggests the existence of a mysterious form of energy that permeates all of space and drives this expansion. Dark energy is thought to possess negative pressure, counteracting the gravitational pull of matter and causing the universe to expand at an increasing rate. Its nature and origin remain elusive, with potential explanations ranging from a cosmological constant, as proposed by Einstein, to more exotic possibilities like quintessence or modifications of general relativity. Dark energy constitutes a significant fraction of the total energy density in the universe, but its precise properties and role in cosmic evolution continue to be active areas of scientific investigation. Adam Riess || 1998 Multiverse Theory Multiverse theory is a speculative concept in cosmology and theoretical physics that suggests the existence of multiple universes or parallel realities beyond our own observable universe. According to this theory, each universe within the multiverse could have its own unique physical laws, constants, and properties. The idea of a multiverse arises from attempts to explain various fundamental questions, such as the fine-tuning of physical constants and the origin of our universe. While there are different versions of multiverse theory, they generally propose that the vastness of possibilities extends beyond what we can observe, and that our universe is just one among countless others. The concept of a multiverse is still highly speculative and remains a topic of philosophical and scientific debate, with ongoing research exploring its potential implications and ways to test its validity. William James || 1895 Tagmark's Four Levels of Multiverse The concept of the multiverse is indeed a subject of ongoing scientific exploration and theoretical discussion. Some theories propose different levels or types of multiverse based on various hypotheses, such as: Level I Multiverse: This level of multiverse is based on the idea of an infinite or vastly large universe, where regions far beyond what we can observe contain regions similar to our observable universe. This concept arises from cosmic inflation theory. Level II Multiverse: This level of multiverse is related to the idea of bubble universes within an inflating space. According to eternal inflation theory, our universe could be just one of many "bubbles" embedded in a larger multiverse. Level III Multiverse: This level of multiverse stems from the concept of a "many-worlds interpretation" of quantum mechanics. It suggests that every quantum event spawns multiple parallel universes, resulting in a branching multiverse where every possible outcome of quantum events occurs in a different universe. Level IV Multiverse: This level of multiverse is often associated with the idea of mathematical or logical universes. It suggests that all conceivable mathematical structures or logical systems exist as separate universes. Max Tagmark Apple in a Box Spatial reasoning or problem-solving: In mathematics or logic puzzles, there are scenarios where you might have to imagine an apple placed inside a box and analyze its properties or movements within that confined space. Thought experiment: Philosophers and scientists often use thought experiments to explore concepts and theories. The "apple in a box" could represent a hypothetical situation used to illustrate a particular idea or phenomenon. Teaching tool: Teachers and educators might use the phrase "apple in a box" to simplify complex concepts for students, making it easier for them to understand and visualize abstract ideas. Perception and reality: The phrase might be used metaphorically to explore the difference between what we perceive (the apple in the box) and what objectively exists (the actual state of the apple). Simulation Theory Virtual Reality Hypothesis: Simulation theory proposes that our entire reality, including the universe and all its inhabitants, might be a computer-generated simulation created by an advanced civilization. Technological Mastery: The theory assumes that a highly developed society could create simulations indistinguishable from reality, complete with conscious beings who believe they are living genuine lives. Existential Questions: Simulation theory raises philosophical questions about the nature of consciousness, the meaning of existence, and the potential layers of reality, challenging conventional understandings of the universe. Speculative Nature: While captivating, simulation theory lacks empirical evidence and serves as a thought experiment that encourages us to ponder the nature of reality and our place within an intricate, simulated cosmos. Nick Bostrom | 2003 Special Relativity Theory Special relativity theory, proposed by Albert Einstein in 1905, is a fundamental theory in physics that revolutionized our understanding of space, time, and motion. It introduces two key principles: Constancy of the Speed of Light: The speed of light in a vacuum is the same for all observers, regardless of their relative motion. This means that the speed of light is an absolute constant. Relativity of Space and Time: Space and time are not absolute but depend on the observer's motion. Time can appear to pass differently for moving objects, and lengths can appear shorter when an object moves at high speeds. Special relativity has been extensively tested and confirmed, and it forms the basis for modern physics, helping us understand phenomena at high speeds and near the speed of light. Albert Einstirn || 1905 Twin Paradox The twin paradox is a thought experiment arising from Einstein's theory of special relativity. It involves two identical twins: one stays on Earth, while the other travels into space at a high speed and then returns. Due to time dilation, the traveling twin ages less than the twin who remained on Earth. This seems paradoxical, but it's resolved by considering the effects of acceleration and relative motion on time and space. The twin paradox illustrates the counterintuitive nature of time dilation and the relativistic effects predicted by special relativity. It's been confirmed through experiments and is a fundamental example of how the theory challenges our everyday understanding of time and motion.​ Quantum Entanglement Quantum entanglement is a bizarre, counterintuitive phenomenon that explains how two subatomic particles can be intimately linked to each other even if separated by billions of light-years of space. Despite their vast separation, a change induced in one will affect the other. In 1964, physicist John Bell posited that such changes can be induced and occur instantaneously, even if the particles are very far apart. Bell's Theorem is regarded as an important idea in modern physics, but it conflicts with other well-established principles of physics. For example, Albert Einstein had shown years before Bell proposed his theorem that information cannot travel faster than the speed of light . Perplexed, Einstein famously described this entanglement phenomenon as "spooky action at a distance." Erwin Schrödinger || 1935 The Infinite Hotel Paradox The Infinite Hotel Paradox is a mind-bending thought experiment in mathematics and philosophy. Imagine a hotel with an infinite number of rooms, and every room is occupied by a guest. When a new guest arrives and wants a room, the manager can still accommodate them by simply asking each current guest to move to the room with a number one higher than their current room. This frees up room 1 for the new guest. What's truly astonishing is that this process can be repeated infinitely, accommodating an infinite number of new guests in a seemingly already full hotel. It challenges our intuitive understanding of finite and infinite quantities, showcasing the paradoxical nature of infinity in a captivating way. David Hilbert's Theory Of Creation The theory of creation, often rooted in religious or mythological beliefs, posits that the universe, Earth, and all living beings were intentionally brought into existence by a divine or supernatural force. Various cultures and religions have their own creation narratives, such as the Judeo-Christian account of God creating the world in seven days, or the Hindu belief in the cosmic dance of Lord Shiva as the source of creation. These theories often serve as explanations for the origins of the cosmos and life itself, offering a framework for understanding our existence and our place in the universe. While the theory of creation is deeply ingrained in cultural and spiritual traditions, it coexists alongside scientific theories of evolution and cosmology, sparking ongoing discussions and debates about the nature of our origins. Charles Darwin || 1859 Grandfather Paradox The grandfather paradox is a thought experiment in the realm of time travel and theoretical physics. It revolves around a hypothetical situation where a person travels back in time and encounters their own grandfather before their grandfather has children. The paradox arises when the time traveler interferes with the past in a way that prevents their own existence. For example, if the time traveler were to prevent their grandparents from meeting or somehow cause their grandfather's death before he could have children, it would create a logical inconsistency. If the time traveler was never born, how could they have traveled back in time in the first place to create the interference? The grandfather paradox raises questions about the nature of time, causality, and the possible consequences of time travel. It's often discussed in discussions about the feasibility and potential paradoxes associated with time travel, but it also highlights some of the challenging problems that arise when contemplating journeys through time. We are nothing.... What is vacuum?, How is vacuum formed?, We believe that there is no air at all in vacuum, meaning vacuum is an empty substance which is completely empty, do you understand this? Wrong, vacuum is not empty matter, vacuum is the space formed by the formation of matter and antimatter. I believe that in this universe of ours, there is an anti-avatar of all the things, like the white hole of the black hole, similarly the anti-matter of the matter. So what are we?, we are also a matter, so can we also have any anti form, absolutely possible, that is why it is called vacuum, and this is how our entire universe is formed, if we say If something came from nothing, then that means we are that nothing. In the end this entire space becomes zero, so can we call ourselves nothing? Chess Square Theory COMING SOON............. Visit Now Parallel World Travel We have heard a lot about time travel, it feels good to hear it but only in imagination and theories, we already know the rest of the reality, but today we have brought another theory in front of you which can happen in the past. There is a thesis based on the above but yes, you will definitely feel happy after reading it. Visit Now We are our GOD This perspective posits that while we are not divine beings, we do possess the capacity to control and manipulate our own destinies, akin to gods in our own right. Drawing parallels with the movie Interstellar, the notion of being the orchestrator of our lives is highlighted. The theory extends to addressing various enigmas such as the Egyptian pyramids and sightings of UFOs, attributing them to our relationship with space. It promises to unravel mysteries and provide answers, though it also emphasizes the importance of mindset in adopting such a worldview. Visit Now The Fermi Paradox The Fermi Paradox is the apparent contradiction between the high probability of extraterrestrial civilizations existing in the vast universe and the lack of any observable evidence or contact with such civilizations. Considering the sheer number of potentially habitable planets, the age of the universe, and the speed at which life emerged on Earth, it seems logical that other advanced civilizations should exist. However, there are various proposed solutions to this paradox, ranging from the possibility that life is rare, to the idea that advanced civilizations self-destruct, or that they communicate in ways we cannot yet detect. Despite extensive efforts, we have not found conclusive evidence of extraterrestrial life, leaving the Fermi Paradox as a major unresolved question in science. Inflationary Cosmology Inflationary cosmology, proposed by Alan Guth in 1980, suggests a rapid expansion of space in the early universe driven by an inflaton field, addressing puzzles in standard Big Bang cosmology. Supported by observations like cosmic microwave background radiation, inflation explains the universe's uniformity and predicts a nearly scale-invariant spectrum of density fluctuations. Challenges include the initial conditions problem and implications for a multiverse, but inflation remains a key area of cosmological research, shaping our understanding of the universe's early history. Visit Now Blackhole Information Paradox The Black Hole Information Paradox presents a fundamental challenge in reconciling quantum mechanics and general relativity within the context of black holes. It arises from the apparent loss of information beyond the event horizon, contradicting the principle of information conservation in quantum mechanics. Proposed solutions include Hawking radiation, the firewall paradox, holographic principles, and theories of quantum gravity such as string theory. Despite ongoing research, a definitive resolution to this paradox remains elusive, representing a crucial frontier in theoretical physics. Visit Now String Theory String theory proposes that fundamental particles aren't point-like but instead tiny, vibrating strings. It attempts to reconcile quantum mechanics and general relativity, aiming for a unified theory of physics. String theory posits extra dimensions beyond the usual three spatial dimensions and one time dimension, offering a framework for understanding the fundamental nature of reality. However, it remains a highly speculative and mathematically complex theory without experimental confirmation. Visit Now

  • Worm Hole | SPACELIA

    Worm Hole Let's begin the curvature of worm hole What is a worm hole?, how are worm holes formed?, and what is the function of a worm hole?, I will tell you all this in this article today, so first let's talk about what a worm hole is, how these worm holes are made and How it works, so worm hole connects two different places in space, just like a bridge, so that we can cover long distances in a short time, as you see in the image below, worm hole space. It bends like this and we can show it as a circle and a circle is a sphere in 3D, so the worm hole is also like a sphere. By traveling in this, you can bridge the distance between two places in a very short time, but a big question is that how are worm holes formed? We have heard about black holes that they are formed after supernova, but worm holes are We do not know how they are formed, worm holes are not a natural phenomenon, we have to create them artificially. But till date we have not succeeded in creating such a big worm hole, we have definitely done this test on a very small level but it is not enough for a human being, so only some advanced civilization can do this in the future. You are controlling us and they can create a worm hole just like the interstellar movie.

  • Advertisement | SPACELIA

    Add Blocks Now you can book this advertisement blocks, for more information contact us threw email. Mail

  • Blackhole Information Paradox | SPACELIA

    Blackhole Information Paradox The Black Hole Information Paradox is a long-standing problem in theoretical physics and astrophysics, concerning the conservation of information in the presence of black holes, which are regions of spacetime where gravity is so strong that not even light can escape from them. The paradox arises from the clash between the principles of quantum mechanics and general relativity. ​ In classical physics, black holes are described by solutions to Einstein's field equations of general relativity, which predict that anything that falls into a black hole will be irretrievably lost behind its event horizon, a boundary beyond which nothing can escape. This implies that any information about the matter that formed the black hole, such as its mass, charge, and angular momentum, is lost to the outside universe. ​ However, according to the principles of quantum mechanics, information cannot be destroyed. Instead, it should always be possible, in principle, to trace the evolution of a quantum system backwards in time and reconstruct the initial state from the final state. This principle is known as unitarity. ​ The paradox arises because the classical description of black holes seems to violate the principles of quantum mechanics. If information is lost behind the event horizon, then the evolution of a black hole's state seems to violate unitarity, leading to a breakdown of quantum mechanics. ​ Various proposed solutions to the Black Hole Information Paradox have been put forward over the years, but none have been universally accepted. Some of these proposals include: ​ Hawking Radiation and Information Loss: Stephen Hawking proposed that black holes emit radiation (now known as Hawking radiation) due to quantum effects near the event horizon. This radiation carries away energy from the black hole, eventually causing it to evaporate completely. Initially, it was believed that this process led to the loss of information, but later work suggested that information might be encoded in the radiation, leading to the idea of "black hole complementarity" or the "firewall paradox." Firewall Paradox: Proposed as a resolution to the information paradox, the firewall paradox suggests that an observer falling into a black hole would encounter a firewall of high-energy particles at the event horizon, contradicting the smooth spacetime predicted by general relativity. This proposal has sparked significant debate within the physics community. Holographic Principle and AdS/CFT Correspondence: The holographic principle suggests that all the information contained within a region of space can be encoded on its boundary. The AdS/CFT correspondence, a conjectured equivalence between certain gravitational theories and quantum field theories, has been used to study black hole physics in this context, offering potential insights into the resolution of the information paradox. Quantum Gravity and String Theory: Some researchers believe that a theory of quantum gravity, which successfully unifies quantum mechanics and general relativity, could resolve the information paradox. String theory is one candidate for such a theory, but it remains highly speculative and has not yet been definitively confirmed. Information Preservation: Other proposals suggest that information may somehow be preserved in a subtle way within the black hole or its radiation, allowing for the eventual recovery of the initial state.Despite decades of research, the Black Hole Information Paradox remains unsolved, and it continues to be a topic of active investigation and debate within the physics community. Resolving this paradox is crucial for developing a complete understanding of the fundamental laws governing the universe. Chat Section If you have any question ask me here.... Other Articles...... Theories Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1 Today Onward Theory Parallel World Travel We are our GOD Inflationary Cosmology

  • SPACELIA | space for space science

    The Messier Objects Unlock the mysteries of the Messier Catalog! Our blog series unveils the fascinating deep-sky objects any astronomy enthusiast can observe. Start Now The Unique Galaxies Unveil the wonders of the cosmos! Our blog series dives into unique galaxies, exploring their shapes, formation, and the secrets they hold. Start Now MAP OF THE SOLAR SYSTEM VIEW MAP SPACE RESEARCH PROGRAM RESEARCH Blogs READ OUR WRITINGS EXOPLANET MISSION BINARY SYSTEM PHOTO ALBUM GALLERY GALLERY NEWS GALLERY Members Invite SPACELIA ¡Únete desde tu móvil! Descarga la app Spaces by Wix y únete a SPACELIA para mantenerte informado estés donde estés. Enviar País +1 Número de teléfono Contact Us Subscribe Form Join Thanks for subscribing!

  • Discoveries | SPACELIA

    Space Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Nasa's Time Line Hubble's Discoveries Presenter please note: Much of the discussion in these slides, and most of the public’s attention, is focused on Hubble’s enormous repertoire of images. View More Hubble's Deep Field The Hubble Space Telescope has made over 1.5 million observations since its launch in 1990, capturing stunning subjects such as the Eagle Nebula and producing data that has been featured in almost 18,000 scientific articles. But no image has revolutionized the way we understand the universe as much as the Hubble Deep Field . View More Hubble's Nebulae Hubble telescope discovered some nebulae here is an image and detail of the nebulae and other information about it. View More Hubble's Star Clusters Billions of trillions of stars illuminate the galaxies of our universe. Each brilliant ball of hydrogen and helium is born within a cloud of gas and dust called a nebula. Deep within these clouds, knots can form, pulling in gas and dust until they become massive enough to collapse under their own gravitational attraction. View More Hubble's Galaxies Our Sun is just one of a vast number of stars within a galaxy called the Milky Way, which in turn is only one of the billions of galaxies in our universe. These massive cosmic neighborhoods, made up of stars, dust, and gas held together by gravity, come in a variety of sizes, from dwarf galaxies containing as few as 100 million stars to giant galaxies of more than a trillion stars. View More Hubble's Galaxy Discovery Our Sun is just one of a vast number of stars within a galaxy called the Milky Way, which in turn is only one of the billions of galaxies in our universe. These massive cosmic View More Hubble's Nebula Discovery ​ The space between stars is dotted with twisting towers studded with stars, unblinking eyes, ethereal ribbons, and floating bubbles. These fantastical shapes, some of the universe’s most visually stunning constructions, are nebulae, clouds of gas and dust that can be the birthplace of stars, the scene of their demise ― and sometimes both. View More Hubble's Planetary Discoveries Hubble, however, has made some unique contributions to the planet hunt. Astronomers used Hubble to make the first measurements of the atmospheric composition of extrasolar planets. Hubble observations have identified atmospheres that contain sodium, oxygen, carbon, hydrogen, carbon dioxide, methane and water vapor. View More Kepler's Exoplanets NASA's Kepler spacecraft was launched to search for Earth-like planets orbiting other stars. It discovered more than 2,600 of these "exoplanets"—including many that are promising places for life to exist. View More Space discovery of year 2021 Top 9 Discoveries of year 2021, visit page by clicking view more button. View More

  • Proxima Centauri b | SPACELIA

    Proxima Centauri b Proxima Centauri b is an exoplanet that orbits the red dwarf star Proxima Centauri, which is the closest known star to our Sun. Here's a detailed explanation of Proxima Centauri b, including information about its characteristics, atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of Proxima Centauri b: Size: Proxima Centauri b is classified as an exoplanet with a mass roughly similar to Earth's, making it about 1.3 times the mass of our planet. This places it in the category of terrestrial exoplanets, similar to Earth and Venus. Orbit: Proxima Centauri b orbits its host star, Proxima Centauri, at a very close distance, approximately 0.05 astronomical units (AU), or about 7.5 million kilometers (4.7 million miles). It completes an orbit in just around 11.2 Earth days. Habitability: Proxima Centauri b is located within the habitable zone (Goldilocks zone) of its star. This means it is in the region where conditions for liquid water to exist on the surface are possible, a key factor for potential habitability. 2. Atmosphere of Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing the atmospheres of exoplanets, especially those as distant as Proxima Centauri b, is a challenging task and often requires advanced telescopes and instruments. 3. The Search for Extraterrestrial Life or Aliens: Proxima Centauri b has generated significant interest in the search for extraterrestrial life due to its proximity to Earth and its location within the habitable zone. Scientists and astronomers are particularly interested in studying exoplanets like Proxima Centauri b because they could offer insights into the potential for life beyond our solar system. The search for extraterrestrial life extends beyond Proxima Centauri b and includes the study of other exoplanets both within and outside the habitable zone. Key aspects of this search involve looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. The discovery of life, if it exists, on Proxima Centauri b or any other exoplanet would be a profound scientific breakthrough and could have far-reaching implications for our understanding of life's prevalence in the universe. It's important to note that as of my last knowledge update in September 2021, there is no definitive evidence of extraterrestrial life, and the search continues to be an active and ongoing scientific endeavor. Future missions and advanced technology, such as the James Webb Space Telescope, are expected to provide more data and insights into the atmospheres and potential habitability of exoplanets like Proxima Centauri b. Comparison with Earth Proxima Centauri b and Earth are both planets, but they have significant differences in terms of their characteristics, orbits, and potential habitability. Here's a comparison between the two: 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms, making it a terrestrial planet with a solid surface. Proxima Centauri b: Proxima Centauri b is classified as an exoplanet, and its size and mass are roughly similar to Earth's, with a mass approximately 1.3 times that of Earth. This places it in the category of terrestrial exoplanets. 2. Parent Star and Orbit: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). It takes approximately 365.25 days to complete one orbit. Proxima Centauri b: Proxima Centauri b orbits a red dwarf star known as Proxima Centauri, which is cooler and smaller than the Sun. Its orbital distance is very close to its parent star, about 0.05 astronomical units, which is much closer than Earth's distance from the Sun. Proxima Centauri b completes an orbit in approximately 11.2 Earth days. 3. Habitability and Atmosphere: Earth: Earth is known for its diverse and life-sustaining atmosphere composed primarily of nitrogen (about 78%) and oxygen (about 21%), with trace amounts of other gases. It has liquid water on its surface, a stable climate, and a variety of ecosystems that support a wide range of life forms. Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing exoplanet atmospheres, especially those as distant as Proxima Centauri b, is challenging and requires advanced telescopes and instruments. 4. Potential for Extraterrestrial Life: Earth: Earth is the only known planet to host a wide variety of life forms, from microorganisms to complex multicellular organisms, including humans. Proxima Centauri b: Proxima Centauri b is located within the habitable zone of its star, which means it could have conditions suitable for liquid water to exist on its surface. However, the presence of life on Proxima Centauri b is purely speculative at this point, and more research is needed to assess its habitability and the potential for extraterrestrial life. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f KEPLER-452b

  • White Hole | SPACELIA

    White Hole White holes are theoretical regions of spacetime where matter and energy are thought to emerge outward, representing the hypothetical opposite of black holes. Understanding White Holes: The concept of white holes is a fascinating but theoretical idea within the realm of astrophysics, offering a hypothetical counterpart to black holes in our understanding of the universe. While black holes are regions of spacetime from which nothing can escape, including light, white holes are envisioned as the opposite—a theoretical region where matter and energy can only emerge outward, never to be re-entered. This reversal of the gravitational behavior of black holes forms the basis of the concept of white holes. ​ White holes arise as solutions to the equations of general relativity, which describe the curvature of spacetime in the presence of mass and energy. They represent peculiar regions where spacetime curvature diverges from that of black holes, resulting in the outward flow of matter and energy. However, while the mathematical framework of general relativity supports the existence of white holes, there is currently no observational evidence to confirm their existence. ​ Theoretical models of white holes suggest intriguing properties, including the reversal of time near their central singularities. Whereas black holes represent the ultimate endpoint of gravitational collapse, white holes imply a reversal of this process, with matter and energy emerging outward from a central point. Additionally, some theoretical frameworks propose connections between black holes and white holes through wormholes, hypothetical tunnels in spacetime that could provide passages between different regions of the universe. ​ Despite their theoretical appeal, the existence of white holes remains speculative, and several challenges hinder their direct observation or detection. The extreme conditions required for the formation of white holes, coupled with their theoretical nature, pose significant obstacles to observational studies. Nevertheless, white holes continue to capture the imagination of scientists and cosmologists, serving as intriguing objects that push the boundaries of our understanding of the universe's fundamental laws and the mysteries that lie beyond. How White Hole Forms? The formation of white holes is a speculative concept within theoretical astrophysics, and there are several proposed mechanisms for their origin. One hypothesis suggests that white holes could arise as a result of the reverse process of black hole formation. In this scenario, instead of matter collapsing inward under gravity to form a singularity, external forces or quantum effects prevent further collapse, leading to a rebound or "bounce" that results in the outward expulsion of matter and energy. Another possibility is that white holes could emerge from quantum fluctuations or exotic phenomena in the early universe. During the extreme conditions of the universe's infancy, quantum fluctuations could have given rise to regions of spacetime exhibiting the characteristics of white holes, where matter and energy escape outward rather than collapsing inward. ​ Despite these speculative scenarios, the formation of white holes remains an open question in astrophysics, as their extreme nature and theoretical properties pose significant challenges to observational confirmation. Further research and theoretical investigations are needed to elucidate the mechanisms behind white hole formation and their potential role in the cosmos. Is a White Hole connected to a Black Hole? The concept of a black hole being connected to a white hole on the other side is often discussed in theoretical physics and science fiction, but it remains speculative and has not been supported by observational evidence. This idea is based on the theoretical possibility of a wormhole—a hypothetical tunnel-like structure in spacetime that could connect two distant points or even different universes. ​ Here's how the concept of a black hole connected to a white hole through a wormhole is typically envisioned: Wormholes: Wormholes are theoretical solutions to the equations of general relativity that suggest the existence of shortcuts or tunnels through spacetime. These structures would allow matter, energy, or information to travel between distant regions of the universe more quickly than would be possible through normal space. Black Hole Throat and White Hole Throat: In the context of a black hole connected to a white hole, the black hole's event horizon is considered the entrance or "throat" of the wormhole, while the white hole's event horizon is considered the exit or "throat" of the wormhole. One-Way Passage: Theoretical models of this scenario typically involve a one-way passage of matter and energy through the wormhole, with objects falling into the black hole's event horizon emerging from the white hole's event horizon. This setup resembles the behavior of a black hole and a white hole in isolation, where matter falls into the former and escapes from the latter. Cosmological Implications: If black holes and white holes are indeed connected through wormholes, it would have profound implications for our understanding of the universe's structure and dynamics. It could provide a mechanism for the transfer of matter, energy, or even information between different regions of spacetime or even different universes. Speculative Nature: While the concept of black holes connected to white holes through wormholes is mathematically consistent with the laws of general relativity, there is currently no observational evidence to support its existence. Wormholes are highly speculative and remain purely theoretical constructs at this point. ​ Overall, while the idea of a black hole being connected to a white hole through a wormhole is fascinating and has captured the imagination of scientists and science fiction writers alike, it remains speculative and requires further theoretical and observational investigation to determine its validity. Theoretical researches on White Hole : Research on white holes primarily falls within the realms of theoretical physics and cosmology, as there is currently no observational evidence for the existence of white holes. However, scientists have proposed various theories and explored different aspects of white holes within the framework of general relativity and quantum mechanics. Here are some key areas of research and theories related to white holes: ​ Mathematical Analysis: Much of the research on white holes involves mathematical analysis within the framework of general relativity. Scientists have derived theoretical solutions to the Einstein field equations that describe the geometry of spacetime in the presence of a white hole. Relationship to Black Holes: One prominent area of research involves exploring the relationship between black holes and white holes. Some theoretical models suggest that black holes and white holes may be connected through wormholes, hypothetical tunnels in spacetime that could allow matter and energy to travel between them. Hawking Radiation Reversal: Analogous to black holes emitting Hawking radiation, some theories propose that white holes could absorb radiation and matter from their surroundings, leading to a reversal of the Hawking radiation process. This idea is speculative and remains an area of active research. Formation Mechanisms: Scientists have proposed various mechanisms for the formation of white holes. Some theories suggest that white holes could arise as the reverse process of black hole formation, while others speculate that they may emerge from quantum fluctuations or other exotic processes in the early universe. Cosmological Significance: White holes have been proposed as potential explanations for phenomena such as gamma-ray bursts, extremely energetic events observed in distant galaxies. Researchers continue to explore the cosmological implications of white holes and their potential role in the evolution of the universe. Quantum Gravity: Understanding the behavior of white holes may provide insights into the quantum nature of gravity and the unification of quantum mechanics and general relativity. Investigating white holes within the framework of quantum gravity theories, such as loop quantum gravity or string theory, remains an area of active theoretical research. Multiverse Hypothesis: Some speculative cosmological models, such as the multiverse hypothesis, suggest that white holes could be connected to other universes within a larger cosmic ensemble. Research on white holes intersects with broader discussions about the nature of the multiverse and the possibility of other universes beyond our own. ​ Overall, research on white holes spans a wide range of theoretical and conceptual domains within physics and cosmology. While white holes remain hypothetical constructs, exploring their properties and implications contributes to our understanding of the fundamental nature of the universe. Is the White holes are the creator of our universe? The concept of white holes serving as creators of the universe is a speculative idea that lacks empirical evidence and remains largely confined to theoretical discussions. While white holes are theoretical constructs derived from general relativity, positing them as sources from which matter and energy emanate outward, there is no scientific substantiation for their role as the creators of the universe. The prevailing cosmological understanding, rooted in the Big Bang theory, describes the universe's origin as an immensely dense and hot state expanding from a singularity around 13.8 billion years ago. This model does not incorporate white holes as fundamental to universal creation. White holes, if they exist, are envisioned as regions of spacetime where matter and energy escape rather than enter. While the idea of white holes as creators may be intriguing, it remains speculative and lacks empirical support. Other cosmological hypotheses, such as inflationary cosmology or multiverse theories, provide alternative explanations for the universe's origins without invoking white holes. Therefore, while the concept stimulates theoretical discourse, it currently lacks empirical validation and is not widely accepted within the scientific community. White Holes are not possible in Quantum Physics: In the realm of quantum physics, the concept of white holes faces significant challenges due to the fundamental principles governing quantum mechanics. Quantum physics describes the behavior of matter and energy at the smallest scales, where traditional notions of spacetime curvature may break down. One key challenge is reconciling the deterministic nature of general relativity, which underpins the concept of white holes, with the inherent uncertainty and probabilistic behavior inherent in quantum mechanics. Additionally, white holes are associated with extreme gravitational conditions and singularities, where quantum effects are expected to become significant. However, current quantum gravity theories, such as loop quantum gravity or string theory, have not yet provided a complete framework for describing the behavior of spacetime near singularities or within the context of white holes. Therefore, while quantum physics offers valuable insights into the nature of the universe, the theoretical challenges inherent in combining quantum mechanics with general relativity present obstacles to the existence of white holes within a purely quantum framework. Other Articles.... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop Parallel World Travel Age of our Universe Zombie Planets Black Hole

  • Jain geography | SPACELIA

    Jain geography ​All about Jain's geography and space science Introduction The universe for Jains is an elaborate system. Jain cosmology is very distinctive, although it shares some features with other Indian religious traditions. It is centred on the everlasting and non-originating nature of the universe, and thus excludes the notion of a creator-god. As written by a leading monastic figure from the 12th century, ‘the universe having the shape of a man standing with arms akimbo, with feet apart, filled with substances continuously being created, preserved and destroyed, has never been produced by anyone and is not sustained by anyone either. It exists by itself, without any support’.[1] Although Jains do not worship a creator-god, deities do exist, as mediators between the perfected souls of the Jinas and the imperfect world of human experience, and are a part of the Jain cosmology. Structure of the Jain Universe The Jains distinguish two types of space. The first is the world space (loka-ākāśa), which is a vast but limited area where all souls live in the different body-forms they take according to their rebirths in the various worlds. The second is the non-world space (aloka-ākāśa), which is endless. The Jain universe is perfectly structured and ordered. One of its governing principles is symmetry and repetition, so that ‘to know one part is to know the whole’. It can be viewed as ‘a self-replicating composite’ with, for example, a northern region the exact replica of its southern counterpart, halves being identical, etc. The Jain universe is thought of in terms of dimensions and quantities of units. Jain thinkers have produced a vast vocabulary to describe and understand units of time and space, going from the smallest to the largest, beyond what can be imagined. The smallest unit is the atom. Infinite combinations of atoms make up the smallest unit of measurement. At the other extreme, Jains have devised a refined analysis of extremely large numbers, considering the numerable, the innumerable and the infinite. Jain cosmology gives an important place to mathematical concepts and calculations, so that mathematical treatises written by the Jains may take their illustrative examples from cosmological contexts. Śvetāmbaras and Digambaras agree on the structure of the universe and its elements but differ on many names and numbers. ​ Grasping Jain cosmology is vital to understanding the Jain religion. The soul is an innately pure substance. But, due to embodiment and activity, good or bad, it accumulates karma, which in the Jain understanding means physical matter. This alters the purity of the soul and generates cycles of rebirths within the universe until this finally ends. Rebirth can take one of the following four forms of destiny (gati): 1. as a human (manuṣya); 2. as an inhabitant of the hells (naraka); 3. as a deity (deva); or 4. as an animal or plant (tiryag). Spiritual progression requires an understanding of these cosmological theories. Contemplating the universe is also included within the system of reflection-topics (anuprekṣā). Jambudweep This topic can not be logically or physically proven. It can only be understood on the base of Aagam Vani. You may not be able to beleive it if you think it from modern view as it exists right now. This has to be taken on faith to understand and the main foundation of its understanding is Kevalgyan. Two vertical lines are Tras Nadi where Tras Jeev live. This is in the middle with 13 Raju height. Not covering 1 Raju at the top. Every structure we understand or is described is contained within Tras Nadi. Everything outside is only 1 sensory Jeev called Sthavar Jeev. ​ Middle part is Madhya Lok. Middle Earth. 5 Meru parvat in the middle. Sudarshan Meru/Sumeru is the basis of differentiation of 3 Lok. Madhyalok height is defined by Sumeru Parvat. Below it is Adholok. Above it is Urdhvalok. Physical Dimensions: Bottom – 7 Raju Middle – 1 Raju Up Middle – 5 Raju Top – 1 Raju Depth – 7 Raju Height – 14 Raju Volume 343 Raju^3 Scale: Raju/Rajju is a measurement unit. 1 Raju = Infinite Yojan 1 Yojan = 2000 Kos 1 Kos = 2 Miles 1 Mile = 1.64 Km Strange Facts ​ In front of Jain Geography, the principles and discoveries of our science and space become false, because in Jain Geography, the house is considered as a divine plane, whatever nature the house has, that plane will also be of that type, and in the same way in Jain Geography The sun is considered as the plane of heat and the moon as the plane of coolness and an interesting fact about it is that in Jain geography there are two suns and two moons. According to Jainism, man can never go to the Moon or any other planet! Yes, you are listening right, I know that it sounds very different, but it is not a matter that these things are only heard somewhere, this principle is also a reality in Puranas and the map you are seeing above is also Jambudweep. It is from Another special thing in this is that in the middle of Jambudweep, there is Mount Meru, at some distance of which all the things of this universe are present, and according to this, we humans can never reach this sacred plane and all the other things, there is also a solid proof of this. There is a reason which I will tell you later. Yes, I know you will definitely be shocked to hear all this, but it is true and there is also one thing that Jain geography is very different and unique from our modern space science, but I will tell you further in the rest of the information. Who created our Universe according to Jainism No, as per Jainism Universe is eternal. It's neither created nor shall it ever collapse. ​ Now to the question, i.e. what led to the creation (read structure) of the universe ? ​ To keep things simple, we will just concentrate on the middle world where we humans live as it will help us better understand the structure and operations of the universe on the foundations of our current knowledge on the subject. What is outside of the Universe Well, that would define how you describe the universe as. ​ As per Jainism, the universe consists of broadly two regions viz Lokakash and Alokakash 1st region Lokakash is the region that consists of all things made of a material that exhibits the property of Fusion (Pud) and Fission (Gal) which we call matter today. Its this region of the universe that hosts our planet and all other alien habitable planets that support intelligent lifeforms, along with higher and lower planes where demigods and hellish beings reside.

  • spacelia scopic world | SPACELIA

    Spacelia Scopic World Our telescopic discoveries and unique gallery of space images and different space objects hope so you enjoy it.

  • Portfolio | SPACELIA

    Portfolio In the portfolio section, you will get the explanation of the topic with images so that you will be able to learn well and will not get bored.

  • Publications | SPACELIA

    Key Publications Submitted and Published Papers Our Article Space Tourism: A Look into the Future of TravelSpace Tourism: A Look into the Future of Travel​ ​ Space exploration has always captured the imagination of humanity. Since the first moon landing in 1969, the idea of traveling beyond Earth’s atmosphere has fascinated us. Fast forward to the present day, and the concept of space tourism is no longer just a dream. With advancements in technology, this once sci-fi concept is becoming a viable reality.

  • Courses (All) | SPACELIA

    MISSIONS Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More

bottom of page