top of page

Search Results

68 items found for ""

  • Virtual Space | Spaceter

    Virtual Space Tour Enjoy your virtual space tour experience with high quality 3d space tour from SPACELIA.

  • Hubble's Planetary Discoveries | Spaceter

    Hubble's Planetary Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Watching the weather patterns on the giant outer planets (Jupiter, Saturn, Uranus, and Neptune) has been an ongoing activity throughout Hubble’s lifetime. Jupiter's monster storm, the Great Red Spot, was once so large that three Earths would fit inside it. But new measurements by Hubble reveal that the largest storm in our solar system has downsized significantly. The Red Spot, which has been raging for at least a hundred years, is now only the width of one Earth. The storm images were taken in 1995, 2009, and 2014. The images were taken with Wide Field and Planetary Camera 2 (1995) and Wide Field Camera 3. The large Wide Field Camera 2 image of Jupiter was obtained in 2007, with its moon, Ganymede, just emerging from behind the planet. The semi-major axis of Jupiter's orbit about the Sun is 5.2 astronomical units (483 million miles or 778 million km). The planet has a diameter of roughly 88,789 miles (142,984 km) at the equator. This image of Europa is derived from a global surface map generated from combined NASA Voyager and Galileo space probe observations. The graphic shows the location of water vapor detected over Europa's south pole by Hubble in December 2012. The Hubble observations provide the best evidence to date of water plumes erupting off Europa's surface. Hubble didn't photograph plumes, so the plume and the illustration in the center are artist’s conceptions. However, Hubble observers used the Space Telescope Imaging Spectrograph to spectroscopically detect auroral emissions from oxygen and hydrogen. The aurora is powered by Jupiter's magnetic field. This is only the second moon in the solar system found ejecting water vapor from the frigid surface. Another of Jupiter’s moons, Ganymede, is also likely to have a subsurface ocean. Europa is the sixth closest Jovian moon. It is the smallest of the four Jovian satellites discovered by Galileo Galilei, but still the sixth largest moon in the Solar System. Europa was discovered by Galileo in 1610. Images taken in ultraviolet light by Hubble’s Space Telescope Imaging Spectrograph (STIS) show both Jupiter auroras in 1998, the oval-shaped objects in the inset photos. Ground-based telescopes cannot view these phenomena in ultraviolet light, as it is blocked by the Earth’s atmosphere. Auroras are curtains of light resulting from high-energy electrons racing along the planet's magnetic field into the upper atmosphere. The electrons excite atmospheric gases, causing them to glow. The electric-blue image of Jupiter’s northern aurora shows the main oval of the aurora, which is centered on the magnetic north pole, plus more diffuse emissions inside the polar cap. Though the aurora resembles the same phenomenon that crowns Earth's polar regions, the blue Hubble image shows unique emissions from the magnetic "footprints" of three of Jupiter's largest moons. (These points are reached by following Jupiter's magnetic field from each satellite down to the planet). Jupiter has at least 68 moons. Auroral footprints can be seen in this image from Io (along the left-hand limb), Ganymede (near the center), and Europa (just below and to the right of Ganymede's auroral footprint). These emissions, produced by electric currents generated by the satellites, flow along Jupiter's magnetic field, bouncing in and out of the upper atmosphere. They are unlike anything seen on Earth. This ultraviolet image of Jupiter was taken with the Hubble Space Telescope Imaging Spectrograph (STIS) on November 26, 1998. In this ultraviolet view, the aurora stands out clearly, but Jupiter's cloud structure is masked by haze. Saturn’s aurora was observed with Hubble in 2005. Images were obtained with the Advanced Camera for Surveys in the optical and STIS in the ultraviolet. The aurora appeared in Saturn’s southern polar region for several days. Hubble snapped a series of photographs of the aurora dancing in the sky. The snapshots show that Saturn's auroras differ in character from day to day -- as they do on Earth -- moving around on some days and remaining stationary on others. But compared with Earth, where auroral storms develop in about 10 minutes and may last for a few hours, Saturn's auroral displays always appear bright and may last for several days. Recently, NASA’s New Horizons mission imaged Pluto and two of its moons, Nix and Hydra, which were discovered by Hubble in 2005. Peering out to the dim, outer reaches of our solar system beyond Pluto, Hubble uncovered three Kuiper Belt objects (KBOs) that the agency's New Horizons spacecraft could potentially visit after it flies by Pluto in July 2015. The KBOs were detected through a dedicated Hubble observing program by a New Horizons search team that was awarded telescope time for this purpose. The lower set of Pluto images shows Hubble Space Telescope data from the Advanced Camera for Surveys exhibiting an icy, mottled, dark molasses-colored world undergoing seasonal surface color and brightness changes. Pluto has become significantly redder, while its illuminated northern hemisphere is getting brighter. These changes are most likely consequences of surface ice melting on the sunlit pole and then refreezing on the other pole, as the dwarf planet heads into the next phase of its 248-year-long seasonal cycle. Analysis shows the dramatic change in color took place from 2000 to 2002. Note that Hubble found four of Pluto’s five moons – Nix, Hydra, Styx and Kerberos. http://hubblesite.org/newscenter/archive/releases/2014/47/full/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2010/06/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2012/32/ and related links http://www.nasa.gov/nh_new-horizons-spots-small-moons-orbiting-pluto/#.VPnlP2TF_b4 http://pluto.jhuapl.edu/ ​ Other outer solar system objects: Eris is 1.27 times the mass of Pluto, and formerly the largest member of the Kuiper Belt of icy objects beyond Neptune. Hubble observations in 2006 showed that Eris is slightly physically larger than Pluto. But the mass could only be calculated by observing the orbital motion of the moon Dysnomia around Eris. Multiple images of Dysnomia's movement along its orbit were taken by Hubble and Keck. ​ http://hubblesite.org/newscenter/archive/releases/solar%20system/2007/24/image/c/format/web/ Also in 2002, Hubble measured a large object discovered in the outer solar system. It was the largest outer solar system object discovered since Pluto and was superseded by the observation of Eris. Approximately half the size of Pluto, the icy world is called "Quaoar" (pronounced kwa-whar). Quaoar is about 4 billion miles away, more than a billion miles farther than Pluto. Like Pluto, Quaoar dwells in the Kuiper belt, an icy belt of comet-like bodies extending 7 billion miles beyond Neptune's orbit. http://hubblesite.org/newscenter/archive/releases/2002/17/ The upper image, taken by Hubble, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit around its parent star, Fomalhaut. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere. The black circle at the center of the image is caused by a device called a coronograph, which blocks out the otherwise overwhelming light from the bright star and allows reflected light from the belt and planet to be photographed. The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012. Fomalhaut is 25 light years (8 parsecs) away. ​ http://hubblesite.org/newscenter/archive/releases/2013/01/ The lower graphic demonstrates Hubble’s first detection ever of an organic molecule in the atmosphere of a Jupiter-sized planet orbiting another star. This breakthrough is an important step toward eventually identifying signs of life on a planet outside our solar system. The molecule found by Hubble is methane, which under the right circumstances can play a key role in prebiotic chemistry — the chemical reactions considered necessary to form life as we know it. The graphic shows a spectrum of methane with the configuration of the star and the planet (not to scale) in relation to Hubble. The object is 63 light years (19 parsecs) away. http://hubblesite.org/newscenter/archive/releases/2008/11/

  • Open Positions | Spaceter

    Job Openings Research Opportunities at Spacelia Administrative Director Enter information about this job vacancy here. Describe the position and the details of what the applicant would do. Be sure to include both educational and experiential requirements for the position, as well as details about the type of person you are looking for. Assistant Manager Enter information about this job vacancy here. Describe the position and the details of what the applicant would do. Be sure to include both educational and experiential requirements for the position, as well as details about the type of person you are looking for. Research Assistant Enter information about this job vacancy here. Describe the position and the details of what the applicant would do. Be sure to include both educational and experiential requirements for the position, as well as details about the type of person you are looking for. Come Work with Us Join the Team Fill this form to work in SPACELIA, we appreciate talent and we salute young talent, so to be a SPACELIA join SPACELIA Position I'm applying for Apply Now Thanks for submitting!

  • Discoveries | Spaceter

    Space Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Nasa's Time Line Hubble's Discoveries Presenter please note: Much of the discussion in these slides, and most of the public’s attention, is focused on Hubble’s enormous repertoire of images. View More Hubble's Deep Field The Hubble Space Telescope has made over 1.5 million observations since its launch in 1990, capturing stunning subjects such as the Eagle Nebula and producing data that has been featured in almost 18,000 scientific articles. But no image has revolutionized the way we understand the universe as much as the Hubble Deep Field . View More Hubble's Nebulae Hubble telescope discovered some nebulae here is an image and detail of the nebulae and other information about it. View More Hubble's Star Clusters Billions of trillions of stars illuminate the galaxies of our universe. Each brilliant ball of hydrogen and helium is born within a cloud of gas and dust called a nebula. Deep within these clouds, knots can form, pulling in gas and dust until they become massive enough to collapse under their own gravitational attraction. View More Hubble's Galaxies Our Sun is just one of a vast number of stars within a galaxy called the Milky Way, which in turn is only one of the billions of galaxies in our universe. These massive cosmic neighborhoods, made up of stars, dust, and gas held together by gravity, come in a variety of sizes, from dwarf galaxies containing as few as 100 million stars to giant galaxies of more than a trillion stars. View More Hubble's Galaxy Discovery Our Sun is just one of a vast number of stars within a galaxy called the Milky Way, which in turn is only one of the billions of galaxies in our universe. These massive cosmic View More Hubble's Nebula Discovery The space between stars is dotted with twisting towers studded with stars, unblinking eyes, ethereal ribbons, and floating bubbles. These fantastical shapes, some of the universe’s most visually stunning constructions, are nebulae, clouds of gas and dust that can be the birthplace of stars, the scene of their demise ― and sometimes both. View More Hubble's Planetary Discoveries Hubble, however, has made some unique contributions to the planet hunt. Astronomers used Hubble to make the first measurements of the atmospheric composition of extrasolar planets. Hubble observations have identified atmospheres that contain sodium, oxygen, carbon, hydrogen, carbon dioxide, methane and water vapor. View More Kepler's Exoplanets NASA's Kepler spacecraft was launched to search for Earth-like planets orbiting other stars. It discovered more than 2,600 of these "exoplanets"—including many that are promising places for life to exist. View More Space discovery of year 2019 Top 9 Discoveries of year 2019, visit page by clicking view more button. View More Space discoveries of year 2021 Top 9 Discoveries of year 2021, visit page by clicking view more button. View More

  • Preset Portfolio

    Kepler's Exoplanets

  • Nearest Star System | Spaceter

    Nearest Star Systems Certainly, here is a list of the 100 nearest star systems to our solar system, along with brief explanations for each: Alpha Centauri A : The primary star in the Alpha Centauri system, part of the closest star system to our Sun. Alpha Centauri B : The second star in the Alpha Centauri system, which includes a third star, Proxima Centauri. Proxima Centauri : The closest known star to our solar system, located in the Alpha Centauri system. Barnard's Star : The fourth-closest known individual star to our Sun, located in the Ophiuchus constellation. Luhman 16 : A binary brown dwarf system, about 6.59 light-years away from us. Wolf 359 : A red dwarf star, one of the nearest to Earth, approximately 7.8 light-years away. Lalande 21185 : A red dwarf star situated around 8.29 light-years from our Sun. Sirius : The brightest star in Earth's night sky, located about 8.6 light-years away. Ross 154 : A red dwarf star, roughly 9.69 light-years from our Sun. Ross 248 : Another red dwarf star, approximately 10.32 light-years away. Epsilon Eridani : A young star known to have at least one exoplanet, about 10.49 light-years away. 61 Cygni A : The primary star in the 61 Cygni binary system, approximately 11.41 light-years away. 61 Cygni B : The companion star in the 61 Cygni binary system. Struve 2398 A : A red dwarf star in a binary system, about 11.49 light-years away. Struve 2398 B : The companion star in the Struve 2398 binary system. Groombridge 34 A : A binary star system, around 11.62 light-years from our Sun. Groombridge 34 B : The companion star in the Groombridge 34 binary system. Procyon : Also known as Alpha Canis Minoris, it's about 11.46 light-years away and is one of the brightest stars in the night sky. Tau Ceti : Located about 11.89 light-years away, this star is often studied in the search for habitable planets. Epsilon Indi : About 11.83 light-years away, it's one of the closest solitary brown dwarfs to our Sun. Ross 128 : Approximately 11.13 light-years away, this red dwarf star is of interest for exoplanet searches. EZ Aquarii A : Part of a binary star system, approximately 11.32 light-years away. EZ Aquarii B : The companion star in the EZ Aquarii binary system. Luyten's Star : Located about 12.36 light-years away, it's a red dwarf star often used in astronomical studies. Kruger 60 A : A red dwarf star, approximately 13.1 light-years away. Kruger 60 B : The companion star in the Kruger 60 binary system. Gliese 1061 : A red dwarf star situated around 13.06 light-years away. Gliese 1 : Located about 15.76 light-years away, it's part of the Ursa Major constellation. Lacaille 8760 : Also known as AX Microscopii, it's about 12.88 light-years away. Wolf 1061 : A red dwarf star, approximately 14.05 light-years from our Sun. DX Cancri : Located about 14.82 light-years away, it's part of the Cancer constellation. Sirius B : The companion white dwarf star to Sirius A. 40 Eridani A : Also known as Keid, it's about 16.47 light-years away. 40 Eridani B : Part of the 40 Eridani binary system. 40 Eridani C : Also known as Proxima D, it's part of the 40 Eridani system. Proxima Eridani : Located around 16.44 light-years away. GJ 1066 : A red dwarf star situated around 16.87 light-years from our Sun. GJ 1214 : Known for its super-Earth exoplanet, located about 42 light-years away. GJ 1245 A : Part of a binary star system, about 17.16 light-years away. GJ 1245 B : The companion star in the GJ 1245 binary system. GJ 2005 : A red dwarf star approximately 17.52 light-years away. Kapteyn's Star : Located around 12.76 light-years away, it's one of the nearest stars to the solar system. AX Microscopii A : Part of the Lacaille 8760 binary system. AX Microscopii B : The companion star in the Lacaille 8760 binary system. Delta Eridani : Also known as DY Eridani, it's about 26.26 light-years away. GJ 402 : Located approximately 19.11 light-years away. Ross 614 : Also known as UV Ceti, it's a red dwarf star around 21.09 light-years away. Ross 780 : A red dwarf star located about 20.84 light-years away. Ross 619 : Also known as V577 Monocerotis, it's about 20.94 light-years away. Gliese 412 : A red dwarf star situated around 21.01 light-years away. AC+79°3888 : Located about 21.09 light-years away. Gliese 687 : A red dwarf star, about 21.03 light-years from our Sun. Lalande 25372 : Located approximately 21.16 light-years away. Ross 780 : Part of the Ross 780 binary system. Ross 619 : Also known as V577 Monocerotis, part of the Ross 619 binary system. Gliese 412 : Part of the Gliese 412 binary system. AC+79°3888 : Part of the AC+79°3888 binary system. Gliese 687 : Part of the Gliese 687 binary system. Lalande 25372 : Part of the Lalande 25372 binary system. Gliese 54 : A red dwarf star, approximately 21.53 light-years away. Gliese 22 : Located about 22.35 light-years away. Gliese 338 : Part of the Gliese 338 binary system, around 22.44 light-years away. Gliese 54 : Part of the Gliese 54 binary system. Gliese 22 : Part of the Gliese 22 binary system. Gliese 338 : Part of the Gliese 338 binary system. Gliese 830 : Located about 22.83 light-years away. Gliese 860 : Also known as Ross 842, it's approximately 22.36 light-years away. Gliese 880 : Located about 22.92 light-years away. Gliese 908 : Also known as V840 Cygni, situated around 22.29 light-years away. Gliese 752 : Also known as BD+02°3375, it's located approximately 22.57 light-years away. Gliese 117 : Also known as BD+43°4305, it's about 23.31 light-years away. Gliese 35 : Also known as BD-05°1844, it's around 23.51 light-years away. Gliese 559 : Also known as BD+47°3379, located approximately 23.61 light-years away. Gliese 369 : Also known as BD+75°325, it's about 23.69 light-years away. Gliese 372 : Also known as BD+35°3291, located approximately 23.70 light-years away. Gliese 109 : Also known as BD+63°1985, it's about 23.84 light-years away. Gliese 349 : Also known as BD+58°419, located approximately 23.88 light-years away. Gliese 12 : Also known as CD-44°163, situated around 24.33 light-years away. Gliese 22 : Also known as BD+16°1608, it's approximately 24.55 light-years away. Gliese 700 : Also known as CD-53°163, located about 24.70 light-years away. Gliese 735 : Also known as BD+36°1987, situated around 24.71 light-years away. Gliese 35 : Also known as BD+05°1780, it's approximately 24.74 light-years away. Gliese 799 : Also known as BD+28°3133, located about 24.84 light-years away. Gliese 350 : Also known as BD+27°2591, situated around 24.91 light-years away. Gliese 389 : Also known as BD+22°1950, it's approximately 25.00 light-years away. Gliese 424 : Also known as CD-38°161, located about 25.09 light-years away. Gliese 427 : Also known as BD+36°2107, situated around 25.16 light-years away. Gliese 12 : Also known as CD-44°161, part of the Gliese 12 binary system. Gliese 22: Also known as BD+16°1608, part of the Gliese 22 binary system. Gliese 700 : Also known as CD-53°163, part of the Gliese 700 binary system. Gliese 735 : Also known as BD+36°1987, part of the Gliese 735 binary system. Gliese 35 : Also known as BD+05°1780, part of the Gliese 35 binary system. Gliese 799 : Also known as BD+28°3133, part of the Gliese 799 binary system. Gliese 350 : Also known as BD+27°2591, part of the Gliese 350 binary system. Gliese 389 : Also known as BD+22°1950, part of the Gliese 389 binary system. Gliese 424 : Also known as CD-38°161, part of the Gliese 424 binary system. Gliese 427 : Also known as BD+36°2107, part of the Gliese 427 binary system. Gliese 86 : Also known as BD+48°2045, it's approximately 25.30 light-years away. Gliese 545 : Also known as BD+04°2466, located about 25.38 light-years away. Other Articles..... STAR VFTS102 KEPLER-452b KEPLER-186f Proxima Centauri b TRAPPIST-1

  • kepler telescope | Spaceter

    Discovered Exoplanets Kepler Telescope NASA's Kepler spacecraft was launched to search for Earth-like planets orbiting other stars. It discovered more than 2,600 of these "exoplanets"—including many that are promising places for life to exist.

  • Research | Spaceter

    Research Projects Space research and latest discoveries Star Formation This is your Project description. Whether your work is based on text, images, videos or a different medium, providing a brief summary will help visitors understand the context and background. Then use the media section to showcase your project. Nebula Observation This is your Project description. Whether your work is based on text, images, videos or a different medium, providing a brief summary will help visitors understand the context and background. Then use the media section to showcase your project. Solar Flare Detection This is your Project description. Whether your work is based on text, images, videos or a different medium, providing a brief summary will help visitors understand the context and background. Then use the media section to showcase your project. The Big Bang Effect The early theory of origin of origin of universe is The Big Bang Theory. which consist a nebular exploidation of two nebulas. this theory is a strongest theory of the origin of universe. when big bang cause dark mater and all galaxies are origin. all things of our universe is cause in this time. scientist strongly work on this theory. Existence of Alien civilization Our Milky Way galaxy is around 4 billion years old, but our universe is around 13 billion years old, so if we have high technology like space craft and rocket etc, so just imagine that how other galaxy's civilization is powerful and high-tech. so point is in whole universe there is many planets like earth is good for life and maybe life is exist in this planets, so if alien exist they have more power and technology, and maybe possible they planning to attack on earth. we must be alert and full-fill to fight with aliens. Antient Literature & Geography In Hinduism they called Brahma, Vishnu, Mahesh is never born or die, let's except. They say that lord brahma created universe, let's except this also. My point is if lord brahma creates everything so which mater form is lord brahma, and if lord brahma creates atom or nano atom in nothing so where is lord brahma in nothing in which form of mater. Something came from nothing so where is lord and how it's possible. We are living in matrix yes, we are living in matrix! shocking but true many scientist proves that we are in matrix why let me explain, what we see with help of our eyes is compatible to our eyes but we can not able to see alfa red rays or electro magnetic waves but in changes of camera lance and settings we clearly see a chipset in our sky which prove that this world is matrix, detail proven photos is given in portfolio section just visit it. Net mass of our universe 500000000000000000000000000000000000000000000000000000 this number is a total mass of our universe but net mass of our universe is zero!, yes because we have already learned that we cannot create or destroy mass so when mass cannot be created so where mass came from, let me explain what is in vacuum, vacuum is one since matter and anti-matter are formed by fluctuations, the opposite of what we see also exists here, so our universe has a net mass of zero. Nearest Star System Certainly, here is a list of the 100 nearest star systems to our solar system, along with brief explanations for each: Visit More KEPLER-452b Kepler-452b, often referred to as "Earth's cousin," is an exoplanet that was discovered by NASA's Kepler Space Telescope. It was announced as a significant discovery in July 2015. Here's a detailed explanation of Kepler-452b, including information about its characteristics, atmosphere, and the potential for extraterrestrial life Visit More KEPLER-186f Kepler-186f is an Earth-sized exoplanet located 500 light-years away in the constellation Cygnus. It orbits a red dwarf star, Kepler-186, within its habitable zone, where conditions might allow liquid water to exist. This discovery sparked interest in the search for potentially habitable exoplanets and raised questions about the possibility of extraterrestrial life beyond our solar system. However, limited data about its atmosphere and surface make it challenging to assess its true habitability. Visit More Proxima Centauri b Proxima Centauri b is an exoplanet that orbits the red dwarf star Proxima Centauri, which is the closest known star to our Sun. Here's a detailed explanation of Proxima Centauri b, including information about its characteristics, atmosphere, and the search for extraterrestrial life or aliens Visit More TRAPPIST-1 TRAPPIST-1 is a star system located about 39 light-years away from Earth in the constellation Aquarius. It gained significant attention and interest in the scientific community and the public due to the discovery of seven Earth-sized exoplanets orbiting the ultra-cool dwarf star TRAPPIST-1. Here's a detailed explanation of the TRAPPIST-1 system, including information about its characteristics, the potential for atmosphere, and the search for extraterrestrial life or aliens Visit More LHS 1140b LHS 1140b is an exoplanet that orbits the red dwarf star LHS 1140, which is located in the constellation Cetus, approximately 41 light-years away from Earth. Discovered in 2017, LHS 1140b has garnered significant attention in the field of exoplanet research due to its potential for habitability and its relatively close proximity to our solar system. Here's a detailed explanation of LHS 1140b, including information about its characteristics, atmosphere, and the potential for extraterrestrial life Visit More Age of our Universe COMING SOON......... Visit More Worm Hole COMING SOON......... Visit More Religious Point of View COMING SOON......... Visit More Existence of Multiverse what is multiverse? , Does it exist in real?, and if yes then how, I will also show its proof and an experiment. In this article, you will know the secret of the multiverse and all the facts related to it and will also know whether it exists or not. Visit More

  • Inflationary Cosmology | Spaceter

    Inflationary Cosmology Theory Concept...... Inflationary cosmology is a theoretical framework in physical cosmology that proposes a rapid exponential expansion of space in the early universe. It was first proposed by physicist Alan Guth in 1980 to address several puzzles in the standard Big Bang cosmology, such as the horizon problem, the flatness problem, and the origin of structure in the universe. ​ The key idea behind inflation is that the universe underwent a brief period of extremely rapid expansion, driven by a hypothetical scalar field called the inflaton. During this inflationary epoch, the universe expanded exponentially, stretching quantum fluctuations to macroscopic scales and smoothing out the curvature and density of space. This expansion also effectively "ironed out" any irregularities in the early universe, explaining the uniformity of the cosmic microwave background radiation observed today. ​ Inflationary cosmology has been supported by a variety of observational data, including measurements of the cosmic microwave background radiation by satellites like the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck satellite. These measurements have provided strong evidence for the predictions of inflation, such as the nearly scale-invariant spectrum of primordial density fluctuations. ​ Despite its success in addressing many cosmological puzzles, inflationary cosmology is still a subject of active research and debate. There are various models of inflation, each with its own predictions and implications for the universe's early history. Additionally, there are ongoing efforts to test inflationary predictions through observations of the cosmic microwave background, gravitational waves, and large-scale structure in the universe. ​ Some challenges and open questions remain within the framework of inflationary cosmology, including the initial conditions problem (i.e., explaining how inflation started and why the inflaton field had the necessary properties), the reheating mechanism (i.e., how the energy stored in the inflaton field was converted into ordinary matter and radiation), and the so-called "multiverse" implications (i.e., the idea that inflation can lead to the creation of multiple universes with different properties). ​ Overall, inflationary cosmology has had a profound impact on our understanding of the early universe and continues to shape theoretical research in cosmology and particle physics. Chat Section Other Articles...... Theories Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop Today Onward Theory Parallel World Travel We are our GOD STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1

  • Worm Hole | Spaceter

    Worm Hole Let's begin the curvature of worm hole What is a worm hole?, how are worm holes formed?, and what is the function of a worm hole?, I will tell you all this in this article today, so first let's talk about what a worm hole is, how these worm holes are made and How it works, so worm hole connects two different places in space, just like a bridge, so that we can cover long distances in a short time, as you see in the image below, worm hole space. It bends like this and we can show it as a circle and a circle is a sphere in 3D, so the worm hole is also like a sphere. By traveling in this, you can bridge the distance between two places in a very short time, but a big question is that how are worm holes formed? We have heard about black holes that they are formed after supernova, but worm holes are We do not know how they are formed, worm holes are not a natural phenomenon, we have to create them artificially. But till date we have not succeeded in creating such a big worm hole, we have definitely done this test on a very small level but it is not enough for a human being, so only some advanced civilization can do this in the future. You are controlling us and they can create a worm hole just like the interstellar movie.

  • Contact | Spaceter

    Contact Us Click here to visit our blogging page Click here to join with SPACELIA space research program spaceter.space@gmail.com

  • News | Spaceter

    Latest News Latest Press Mentions Exciting Findings at Spacelia Add a News Article with a short summary and a link. You can also add a video for extra engagement. Be detailed and thorough to interest your readers, and include links to the original story online. A Revolutionary Space Exploration Lab Add a News Article with a short summary and a link. You can also add a video for extra engagement. Be detailed and thorough to interest your readers, and include links to the original story online. Top Discoveries of the Decade Add a News Article with a short summary and a link. You can also add a video for extra engagement. Be detailed and thorough to interest your readers, and include links to the original story online. Chandrayan-3 We proudly say that our Indian Space Research Organization declares chandrayan-3 mission details, ISRO is likely to launch Chandrayaan-3 on July 14, 2023 at 2:30 pm from the Satish Dhawan Space Centre at Sriharikota. The mission involves landing a rover on the lunar surface. The mission has been budgeted at Rs 615 crore. Chandrayaan-3 is a follow-on mission to Chandrayaan-2 to demonstrate end-to-end capability in safe landing and roving on the lunar surface. It has a lander and rover configuration. open this link to watch live updates of chandrayan-3 - https://www.youtube.com/live/hotLcNvS_VA?feature=share Aditya L1 Aditya L1 shall be the first space based Indian mission to study the Sun. The spacecraft shall be placed in a halo orbit around the Lagrange point 1 (L1) of the Sun-Earth system, which is about 1.5 million km from the Earth. A satellite placed in the halo orbit around the L1 point has the major advantage of continuously viewing the Sun without any occultation/eclipses. it will be launch on 2nd september 11:50, and it will take about 109 days to reach l1 point. click here to see Aditya-L1 launch

  • Hubble's Deep Field | Spaceter

    Hubble's Deep Field The Hubble Space Telescope has made over 1.5 million observations since its launch in 1990, capturing stunning subjects such as the Eagle Nebula and producing data that has been featured in almost 18,000 scientific articles. But no image has revolutionized the way we understand the universe as much as the Hubble Deep Field . A Core Sample of the Universe ​ The Hubble Deep Field image holds 342 separate exposures taken between December 18 and 28, 1995. The picture we see was assembled from blue, red, and infrared light. The combination of these images allows astronomers to infer the distance, age, and composition of the galaxies photographed. Bluer objects, for example, contain young stars or could be relatively close. Redder objects contain older stars or could be farther away. Most of the galaxies are so faint ― four billion times fainter than the human eye can see ― that they had never been observed before, even by the largest telescopes. “As the images have come up on our screens, we have not been able to keep from wondering if we might somehow be seeing our own origins in all of this,” Williams said at the time. “These past 10 days have been an unbelievable experience.” The “deep” in Hubble Deep Field refers to the telescope’s ability to look at some of these far, faint objects. Looking at far-away objects in space is like seeing back in time. Light moves at tremendous speed, but it still takes time to travel across the vastness of space. Even the light from our own Sun needs eight minutes and 20 seconds to reach Earth, so when we look at the Sun, we see it as it was a little more than eight minutes earlier. The farther away the object, the younger it appears in Hubble’s gaze. The Deep Field was like a core sample of space, showing galaxies at different and earlier stages of development the deeper they appeared in the image. Researchers from the State University of New York at Stony Brook analyzed the photo and chose several dozen candidates that could be more distant than any galaxies seen up to that point. They identified the galaxies based on their color, because more distant galaxies appear redder as the light reaches us. This happens because the light stretches as it travels through the universe, transforming into infrared wavelengths, which are redder. A 1998 follow-up infrared image taken with Hubble’s Near Infrared Camera and Multi-Object Spectrometer discovered galaxies believed to be over 12 billion light-years away, even farther than those seen in the Hubble Deep Field. Hubble Deep Field South After the success of the original Hubble Deep Field, astronomers sought new ways to increase our understanding of the universe. Since it would take 900,000 years for astronomers to observe the whole sky, they knew they would have to rely on more samples like the Hubble Deep Field to infer what the entire universe looks like. The Hubble Deep Field South focused on a region in the constellation Tucana, near the south celestial pole, and doubled the number of distant galaxies available to astronomers. Williams and a team of 50 astronomers and technicians at the Institute and at Goddard Space Flight Center in Greenbelt, Maryland, carried out the 10-day-long observation in October 1998. Hubble Ultra Deep Field ​ In 2004, Hubble captured a million-second-long exposure that contained 10,000 galaxies. This new image, the Hubble Ultra Deep Field, observed the first galaxies to emerge from the “dark ages,” a time just after the Big Bang. A servicing mission in 2002 had installed a new camera, called the Advanced Camera for Surveys. That camera had twice the field of view and a higher sensitivity than WFPC2, the camera that captured the original Deep Field. The final Ultra Deep Field photo is actually combined from an ACS image and an image from Hubble’s Near-Infrared Camera and Multi-object Spectrometer. “Hubble takes us to within a stone’s throw of the Big Bang itself,” said Massimo Stiavelli, an instrument scientist for Hubble at the Space Telescope Science Institute. From ground-based telescopes, the location of the Ultra Deep Field in the constellation Fornax ― right below the constellation Orion ― looked mostly empty, much like the other Deep Field locations, allowing for more distant observations to take place. The Ultra Deep Field image contained several odd galaxies, such as one shaped like a toothpick and another shaped like a bracelet link. Such galaxies come from a more chaotic time before the development of structured galaxies like the Milky Way. Ultra Deep Field data also taught astronomers that black holes at the center of galaxies likely grew over time, that large galaxies build up gradually as others merge and collide, and that some of the earliest galaxies were much smaller than our current Milky Way. Hubble Ultra Deep Field-Infrared ​ In 2009, Hubble captured near-infrared light wavelengths in the same region as the Ultra Deep Field, revealing galaxies formed just 600 million years after the Big Bang. The light from one object, called UDFj-39546284, traveled 13.2 billion light-years to reach Earth. It’s a compact galaxy made up of blue stars, and astronomers found that the rate of star formation grew by a factor of 10 in just over 200 million years ― that may sound like a long time to us, but it’s tiny for the universe. ​ ​ ​ Hubble eXtreme Deep Field In 2012, Hubble took it to the extreme. Astronomers combined 10 years of photographs taken of a region in the center of the original Ultra Deep Field. Even with its smaller view, the eXtreme Deep Field still showed 5,500 galaxies. The faintest galaxies visible in this image are one ten-billionth of what the human eye can see, and most of the galaxies shown are from when they were young and small, often colliding and merging together. ​ ​ ​ Ultra Deep Field 2012 After observations made over six weeks in August and September 2012, a team of astronomers discovered a population of seven primitive galaxies formed when the universe was just 3% of its present age. The observations supported the idea that galaxies may have provided enough energy to reheat the universe after the Big Bang. ​ ​ ​ Frontier Fields NASA’s Great Observatories ― Hubble, Spitzer, and Chandra ― teamed up in 2013 for the Frontier Fields, a bold multi-year campaign to provide critical data to aid investigations of dark matter and how galaxies change over time, among others. Abell 370 is a cluster with several hundred galaxies at its core. It was one of the first clusters where astronomers observed gravitational lensing and part of the Frontier Fields project. Credits: NASA, ESA, R. Bouwens and G. Illingworth (University of California, Santa Cruz) The campaign provided 12 new deep field images, and astronomers were able to detect galaxies 100 times fainter than those they observed in the Hubble Ultra Deep Field. Focusing on high-redshift galaxies and gravitational lensing, or the natural distortion of light from massive galaxy clusters, the team worked to detect galaxies too faint to be seen by Hubble alone. Such an undertaking propelled our understanding of the universe in ways that could only be achieved with all the Great Observatories working together. The campaign ended in 2017, and now astronomers can use the dataset to continue exploring the early universe. Not only did the Hubble Deep Field change how we understand the universe, it also changed how we share findings. “This coming together of the community to generate a shared, nonproprietary dataset was essentially unprecedented but has since become the model for the majority of large astronomical projects,” wrote University of Washington astronomer Julianne Dalcanton. “This new mode of operating has democratized astronomy.” Hubble’s data was compiled for the Legacy Field, a combination of nearly 7,500 Hubble exposures. It represents 16 years of observations, 265,000 galaxies, and 13.3 billion years, making it the largest collection of galaxies documented by Hubble. The role of exploring the early universe further will fall to the James Webb Space Telescope , expected to launch in late 2021. Designed to see even farther back than Hubble because of its powerful infrared vision, Webb promises exciting observations and new discoveries. But our evolving understanding began with Hubble, and a team not afraid to explore what looked like nothing.

  • Solar System | Spaceter

    Solar System Interesting facts and information about object of our solar system. SUN Star at the Center: The Sun is a star located at the center of our solar system. It is an enormous, nearly spherical ball of hot plasma that generates energy through nuclear fusion. Source of Light and Heat: The Sun radiates immense amounts of light and heat, which provide energy for life on Earth and drive weather patterns, ocean currents, and the climate system. Composition and Size: The Sun is primarily composed of hydrogen (about 74% of its mass) and helium (about 24%). It has a diameter of about 1.4 million kilometers (870,000 miles), making it approximately 109 times the diameter of Earth. MERCURY Closest Planet to the Sun: Mercury is the closest planet to the Sun in our solar system. It orbits the Sun at an average distance of about 57.9 million kilometers (35.98 million miles). Small and Rocky: Mercury is the smallest planet in our solar system, with a diameter of about 4,879 kilometers (3,032 miles). It is a rocky planet, similar to Earth's Moon, with a surface covered in craters, cliffs, and plains. Extreme Temperatures: Due to its proximity to the Sun, Mercury experiences extreme temperature variations. The side facing the Sun can reach scorching temperatures of around 430 degrees Celsius (800 degrees Fahrenheit), while the side facing away from the Sun can plummet to freezing temperatures of about -180 degrees Celsius (-290 degrees Fahrenheit). VENUS Earth's "Twin" Planet: Venus is often referred to as Earth's "twin" because it is similar in size and composition. It is the second planet from the Sun and is the closest planet to Earth. Harsh Atmosphere: Venus has a thick and toxic atmosphere composed mainly of carbon dioxide with clouds of sulfuric acid. This dense atmosphere creates a runaway greenhouse effect, making Venus the hottest planet in our solar system, with surface temperatures averaging around 462 degrees Celsius (864 degrees Fahrenheit). Shrouded in Clouds: The atmosphere of Venus is perpetually covered in thick clouds that create a highly reflective layer, making it the brightest planet visible from Earth. These clouds consist mostly of sulfuric acid and contribute to the intense greenhouse effect and the planet's high surface temperatures. EARTH Third Planet from the Sun: Earth is the third planet in our solar system, located between Venus and Mars. Habitable Planet: Earth is the only known planet to support life. It has a diverse biosphere with a wide range of ecosystems and millions of species, including humans. Blue Planet: Earth is often called the "Blue Planet" because about 71% of its surface is covered by oceans, which contain most of the planet's water. Oxygen and Atmosphere: Earth's atmosphere consists mainly of nitrogen (78%) and oxygen (21%). The presence of oxygen enables the survival of aerobic organisms, including humans. MOON Earth's Natural Satellite: The Moon is Earth's only natural satellite. It orbits around our planet at an average distance of about 384,400 kilometers (238,900 miles). Lunar Phases: The Moon goes through different phases as seen from Earth, caused by the changing positions of the Moon, Earth, and Sun. These phases include New Moon, First Quarter, Full Moon, and Last Quarter. Lunar Surface: The Moon's surface is covered with craters, mountains, and plains. The darker areas are called maria, which are large, flat plains formed by ancient volcanic activity. The lighter areas are highlands, composed of mountains and impact craters. Synchronous Rotation: The Moon is tidally locked with Earth, meaning it always shows the same face to us. This phenomenon is known as "synchronous rotation" and is a result of the gravitational interaction between Earth and the Moon. MARS The Red Planet: Mars is often called the "Red Planet" due to its reddish appearance, caused by iron oxide (or rust) on its surface. It is the fourth planet from the Sun in our solar system. Similar to Earth: Mars is a terrestrial planet with similarities to Earth. It has a thin atmosphere primarily composed of carbon dioxide, polar ice caps, seasons, and a day length similar to Earth's. Exploration and Potential for Life: Mars has been extensively explored by robotic missions. Scientists are interested in Mars because it might have had conditions suitable for life in the past, and future missions aim to search for signs of past or present life on the planet. CERES Largest Asteroid: Ceres is the largest object in the asteroid belt between Mars and Jupiter. It is classified as a dwarf planet and is the only one located in the inner solar system. Composition and Size: Ceres is composed mostly of rock and ice, and it has a diameter of about 940 kilometers (590 miles). It accounts for about one-third of the total mass of the asteroid belt. Water Ice and Possible Subsurface Ocean: Observations from spacecraft have revealed that Ceres has significant amounts of water ice on its surface, particularly in its polar regions. There is also evidence to suggest the presence of a subsurface ocean beneath its icy crust. ASTEROID BELT Location: Asteroid belts are regions of space located between the orbits of Mars and Jupiter. The main asteroid belt, the most well-known and studied, is found in this region. Composition: Asteroid belts primarily consist of asteroids, which are rocky and metallic objects. These asteroids can vary in size, ranging from small boulders to large bodies several hundred kilometers in diameter. Origin: Asteroid belts are remnants of the early solar system's formation. They are composed of materials that did not coalesce to form planets due to the gravitational influence of Jupiter's powerful gravity. JUPITER Size and Composition: Jupiter is the largest planet in our solar system, with a diameter of about 143,000 kilometers (89,000 miles). It is primarily composed of hydrogen and helium, similar to the composition of the Sun, but it lacks the critical mass required to trigger nuclear fusion and become a star. Great Red Spot: Jupiter is well-known for its iconic feature called the Great Red Spot. It is a persistent high-pressure storm system, appearing as a large reddish-colored oval on the planet's surface. The Great Red Spot is a centuries-old storm that is larger than Earth itself. SATURN Rings of Saturn: Saturn's iconic rings are composed of countless icy particles ranging in size from micrometers to several meters. These rings are made visible by the sunlight reflecting off the particles, creating a stunning and distinct feature. Cassini Mission: The Cassini spacecraft, launched in 1997, provided a wealth of information about Saturn and its moons. It orbited Saturn for over 13 years and captured breathtaking images of the planet, its rings, and its moons. The mission concluded in 2017 with a controlled descent into Saturn's atmosphere. Hexagonal Storm: Saturn's north pole is home to a unique atmospheric phenomenon known as the hexagonal storm. This massive, persistently swirling storm forms a hexagonal shape and has a central vortex. The exact cause of this peculiar weather pattern is still under investigation. COMETS Composition: Comets are composed of ice, rock, dust, and organic compounds. Their icy nucleus contains a mixture of water, frozen gases (such as carbon dioxide and methane), and various types of solid particles. Orbits: Comets have elongated orbits that can take them far from the Sun, often originating from the Kuiper Belt or the Oort Cloud. When a comet's orbit brings it closer to the Sun, the heat causes the ice to vaporize, creating a glowing coma and distinctive tails. Scientific Significance: Comets are of great scientific importance as they provide a window into the early solar system's formation. By studying comets, scientists can gain insights into the composition and processes that occurred during the formation of planets and other celestial bodies billions of years ago. Space missions have been launched to explore and gather data directly from comets, enhancing our understanding of these fascinating objects. URANUS Unique Tilt: Uranus is known for its extreme axial tilt, as it rotates on its side compared to other planets in the solar system. This tilt is believed to have resulted from a collision with a massive object early in its history, causing its axis to be tilted at an angle of about 98 degrees. Atmosphere: Uranus has a predominantly hydrogen and helium atmosphere, but it also contains traces of methane. This methane gives Uranus its distinctive blue-green color, as it absorbs red light and reflects blue and green light back into space. The atmosphere is characterized by high-speed winds, reaching speeds of up to 900 kilometers per hour (560 miles per hour). Moons and Rings: Uranus has 27 known moons, named after characters from the works of William Shakespeare and Alexander Pope. The five largest moons are Miranda, Ariel, Umbriel, Titania, and Oberon. Uranus also has a system of rings, although they are not as prominent as the rings of Saturn. The rings are relatively dark and composed of ice particles mixed with rocky material. NEPTUNE Position and Distance: Neptune is the eighth and farthest planet from the Sun in our solar system, located about 4.5 billion kilometers (2.8 billion miles) away from the Sun. It takes approximately 165 Earth years for Neptune to complete one orbit around the Sun. Composition and Atmosphere: Neptune is an ice giant planet composed mainly of hydrogen, helium, and ices such as water, methane, and ammonia. Its atmosphere contains a high proportion of methane, which gives it a striking blue color. The presence of methane absorbs red light and reflects blue light, resulting in its distinct appearance. Moons and Rings: Neptune has a system of rings and a collection of moons. The most notable moon is Triton, which is the seventh-largest moon in the solar system and the only large moon in the solar system to orbit in the opposite direction of its planet's rotation. Neptune has a total of 14 known moons, including Nereid, Proteus, and Larissa KUIPER BELT Location and Size: The Kuiper Belt is a vast region of the solar system located beyond Neptune's orbit, extending from about 30 to 55 astronomical units (AU) from the Sun. It is estimated to be around 20 times wider and 200 times more massive than the asteroid belt between Mars and Jupiter. Composition and Objects: The Kuiper Belt is primarily composed of small icy bodies, including dwarf planets, comets, and a multitude of smaller objects known as Kuiper Belt Objects (KBOs). The most famous KBO is Pluto, which was reclassified as a dwarf planet in 2006. The region contains remnants from the early solar system and is believed to provide valuable insights into its formation and evolution. PLUTO Dwarf Planet: Pluto was once considered the ninth planet in our solar system but was reclassified as a dwarf planet in 2006 by the International Astronomical Union (IAU). It is located in the Kuiper Belt, a region beyond Neptune's orbit. Characteristics: Pluto has a rocky core surrounded by a thin atmosphere primarily composed of nitrogen, with traces of methane and carbon monoxide. It has five known moons, the largest of which is Charon, and its surface is covered in frozen nitrogen, methane, and carbon monoxide. Pluto's orbit is highly elliptical, and it takes about 248 Earth years to complete one orbit around the Sun. Charon and Other Moons: Pluto has five known moons, with Charon being the largest and most well-known. Charon is so large relative to Pluto that they are sometimes considered a "binary system." The other moons of Pluto are Nix, Hydra, Kerberos, and Styx. OORT CLOUD Distant Region: The Oort Cloud is a hypothetical, vast, and mostly spherical region that is believed to exist in the outermost reaches of the solar system, far beyond the Kuiper Belt. It is thought to extend from about 2,000 to 200,000 astronomical units (AU) from the Sun. Comet Reservoir: The Oort Cloud is believed to be the source of long-period comets, which are comets with orbital periods greater than 200 years. These comets originate from the Oort Cloud and are occasionally gravitationally perturbed, sending them on highly elliptical orbits that bring them into the inner solar system. Icy Objects: The Oort Cloud is presumed to contain trillions of icy bodies, composed primarily of volatile compounds such as water, methane, ammonia, and carbon dioxide. These objects are remnants from the early formation of the solar system and are thought to be relatively undisturbed since their creation billions of years ago.

  • spacelia scopic world | Spaceter

    Spacelia Scopic World Our telescopic discoveries and unique gallery of space images and different space objects hope so you enjoy it.

  • Proxima Centauri b | Spaceter

    Proxima Centauri b Proxima Centauri b is an exoplanet that orbits the red dwarf star Proxima Centauri, which is the closest known star to our Sun. Here's a detailed explanation of Proxima Centauri b, including information about its characteristics, atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of Proxima Centauri b: Size: Proxima Centauri b is classified as an exoplanet with a mass roughly similar to Earth's, making it about 1.3 times the mass of our planet. This places it in the category of terrestrial exoplanets, similar to Earth and Venus. Orbit: Proxima Centauri b orbits its host star, Proxima Centauri, at a very close distance, approximately 0.05 astronomical units (AU), or about 7.5 million kilometers (4.7 million miles). It completes an orbit in just around 11.2 Earth days. Habitability: Proxima Centauri b is located within the habitable zone (Goldilocks zone) of its star. This means it is in the region where conditions for liquid water to exist on the surface are possible, a key factor for potential habitability. 2. Atmosphere of Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing the atmospheres of exoplanets, especially those as distant as Proxima Centauri b, is a challenging task and often requires advanced telescopes and instruments. 3. The Search for Extraterrestrial Life or Aliens: Proxima Centauri b has generated significant interest in the search for extraterrestrial life due to its proximity to Earth and its location within the habitable zone. Scientists and astronomers are particularly interested in studying exoplanets like Proxima Centauri b because they could offer insights into the potential for life beyond our solar system. The search for extraterrestrial life extends beyond Proxima Centauri b and includes the study of other exoplanets both within and outside the habitable zone. Key aspects of this search involve looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. The discovery of life, if it exists, on Proxima Centauri b or any other exoplanet would be a profound scientific breakthrough and could have far-reaching implications for our understanding of life's prevalence in the universe. It's important to note that as of my last knowledge update in September 2021, there is no definitive evidence of extraterrestrial life, and the search continues to be an active and ongoing scientific endeavor. Future missions and advanced technology, such as the James Webb Space Telescope, are expected to provide more data and insights into the atmospheres and potential habitability of exoplanets like Proxima Centauri b. Comparison with Earth Proxima Centauri b and Earth are both planets, but they have significant differences in terms of their characteristics, orbits, and potential habitability. Here's a comparison between the two: 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms, making it a terrestrial planet with a solid surface. Proxima Centauri b: Proxima Centauri b is classified as an exoplanet, and its size and mass are roughly similar to Earth's, with a mass approximately 1.3 times that of Earth. This places it in the category of terrestrial exoplanets. 2. Parent Star and Orbit: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). It takes approximately 365.25 days to complete one orbit. Proxima Centauri b: Proxima Centauri b orbits a red dwarf star known as Proxima Centauri, which is cooler and smaller than the Sun. Its orbital distance is very close to its parent star, about 0.05 astronomical units, which is much closer than Earth's distance from the Sun. Proxima Centauri b completes an orbit in approximately 11.2 Earth days. 3. Habitability and Atmosphere: Earth: Earth is known for its diverse and life-sustaining atmosphere composed primarily of nitrogen (about 78%) and oxygen (about 21%), with trace amounts of other gases. It has liquid water on its surface, a stable climate, and a variety of ecosystems that support a wide range of life forms. Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing exoplanet atmospheres, especially those as distant as Proxima Centauri b, is challenging and requires advanced telescopes and instruments. 4. Potential for Extraterrestrial Life: Earth: Earth is the only known planet to host a wide variety of life forms, from microorganisms to complex multicellular organisms, including humans. Proxima Centauri b: Proxima Centauri b is located within the habitable zone of its star, which means it could have conditions suitable for liquid water to exist on its surface. However, the presence of life on Proxima Centauri b is purely speculative at this point, and more research is needed to assess its habitability and the potential for extraterrestrial life. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f KEPLER-452b

  • Articles | Spaceter

    Research Papers Articles STAR VFTS102 We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s−1 and probably as large as 600 km s−1; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s−1 from the mean for 30 Doradus, suggesting that it is a runaway. View More Dark Energy In the late 1990s, astronomers found evidence that the expansion of the universe was not slowing down due to gravity as expected. Instead, the expansion speed was increasing. Something had to be powering this accelerating universe and, in part due to its unknown nature, this “something” was called dark energy. View More Zombie Planet Zombie planets, also known as "pulsar planets" or "planets around pulsars," are a fascinating and relatively rare astronomical phenomenon. View More The Dream Mission People must have had many dreams and those dreams would be very unique, but my dream is very unique. Today I will share with you this dream journey full of very interesting and adventures. In this dream of mine, I have done the complete mission of Mars and there are many twists in that too, which I will tell you further in this article. The article is The Dream Mission View More Creation of Mind Loop What we doing, what we experiencing, what we thinking is a creation of mind, and it's just a thoughts View More

bottom of page