Search Results
以空白搜尋找到 81 個結果
- SPACELIA | Space Science & Exploration
Spacelia is a space research and exploration website, it's provides you a space knowledge and informative facts about space POSTS The Messier Objects Unlock the mysteries of the Messier Catalog! Our blog series unveils the fascinating deep-sky objects any astronomy enthusiast can observe. Start Now The Unique Galaxies Unveil the wonders of the cosmos! Our blog series dives into unique galaxies, exploring their shapes, formation, and the secrets they hold. Start Now MAP OF THE SOLAR SYSTEM VIEW MAP SPACE RESEARCH PROGRAM RESEARCH MISSIONS List of all the Space Mission. Read More Blogs READ OUR WRITINGS 此語言尚未有已發佈之文章 文章發佈後將於此處顯示。 Blogs Category CATEGORIES OF WHAT BLOGS ARE FROM EXOPLANET MISSION BINARY SYSTEM Articles Read More Read More Read More Read More PHOTO ALBUM GALLERY GALLERY Publication GALLERY NEWS Members Invite SPACELIA 在行動裝置上加入我們! 下載 Spaces by Wix 應用程式並加入「SPACELIA」,隨時輕鬆掌握最新動態。 寄出 地區 +972 電話號碼 Contact Us Subscribe Form Join Thanks for subscribing!
- Spacelia App | SPACELIA
Keep up to date with cosmos news and discoveries, Install Spacelia Spaces App to get updates Install Our App Install SPACELIA app for group quiz, news and latest updates about this site changes. install it in your compatible platform. Download the app now! Get Updates Get the latest app version, news & updates. Subscribe to our newsletter. Subscribe Thanks for submitting!
- How we Evolved | SPACELIA
Evolution process of Humans, the cycle of evolution from a tiny cell to the multicell body and human intelligence. How we Evolved
- Jain geography | SPACELIA
The universe for Jains is an elaborate system. Jain cosmology is very distinctive, although it shares some features with other Indian religious traditions. It is centred on the everlasting and non-originating nature of the universe, and thus excludes the notion of a creator-god. Jain geography All about Jain's geography and space science Introduction The universe for Jains is an elaborate system. Jain cosmology is very distinctive, although it shares some features with other Indian religious traditions. It is centred on the everlasting and non-originating nature of the universe, and thus excludes the notion of a creator-god. As written by a leading monastic figure from the 12th century, ‘the universe having the shape of a man standing with arms akimbo, with feet apart, filled with substances continuously being created, preserved and destroyed, has never been produced by anyone and is not sustained by anyone either. It exists by itself, without any support’.[1] Although Jains do not worship a creator-god, deities do exist, as mediators between the perfected souls of the Jinas and the imperfect world of human experience, and are a part of the Jain cosmology. Structure of the Jain Universe The Jains distinguish two types of space. The first is the world space (loka-ākāśa), which is a vast but limited area where all souls live in the different body-forms they take according to their rebirths in the various worlds. The second is the non-world space (aloka-ākāśa), which is endless. The Jain universe is perfectly structured and ordered. One of its governing principles is symmetry and repetition, so that ‘to know one part is to know the whole’. It can be viewed as ‘a self-replicating composite’ with, for example, a northern region the exact replica of its southern counterpart, halves being identical, etc. The Jain universe is thought of in terms of dimensions and quantities of units. Jain thinkers have produced a vast vocabulary to describe and understand units of time and space, going from the smallest to the largest, beyond what can be imagined. The smallest unit is the atom. Infinite combinations of atoms make up the smallest unit of measurement. At the other extreme, Jains have devised a refined analysis of extremely large numbers, considering the numerable, the innumerable and the infinite. Jain cosmology gives an important place to mathematical concepts and calculations, so that mathematical treatises written by the Jains may take their illustrative examples from cosmological contexts. Śvetāmbaras and Digambaras agree on the structure of the universe and its elements but differ on many names and numbers. Grasping Jain cosmology is vital to understanding the Jain religion. The soul is an innately pure substance. But, due to embodiment and activity, good or bad, it accumulates karma, which in the Jain understanding means physical matter. This alters the purity of the soul and generates cycles of rebirths within the universe until this finally ends. Rebirth can take one of the following four forms of destiny (gati): 1. as a human (manuṣya); 2. as an inhabitant of the hells (naraka); 3. as a deity (deva); or 4. as an animal or plant (tiryag). Spiritual progression requires an understanding of these cosmological theories. Contemplating the universe is also included within the system of reflection-topics (anuprekṣā). Jambudweep This topic can not be logically or physically proven. It can only be understood on the base of Aagam Vani. You may not be able to beleive it if you think it from modern view as it exists right now. This has to be taken on faith to understand and the main foundation of its understanding is Kevalgyan. Two vertical lines are Tras Nadi where Tras Jeev live. This is in the middle with 13 Raju height. Not covering 1 Raju at the top. Every structure we understand or is described is contained within Tras Nadi. Everything outside is only 1 sensory Jeev called Sthavar Jeev. Middle part is Madhya Lok. Middle Earth. 5 Meru parvat in the middle. Sudarshan Meru/Sumeru is the basis of differentiation of 3 Lok. Madhyalok height is defined by Sumeru Parvat. Below it is Adholok. Above it is Urdhvalok. Physical Dimensions: Bottom – 7 Raju Middle – 1 Raju Up Middle – 5 Raju Top – 1 Raju Depth – 7 Raju Height – 14 Raju Volume 343 Raju^3 Scale: Raju/Rajju is a measurement unit. 1 Raju = Infinite Yojan 1 Yojan = 2000 Kos 1 Kos = 2 Miles 1 Mile = 1.64 Km Strange Facts In front of Jain Geography, the principles and discoveries of our science and space become false, because in Jain Geography, the house is considered as a divine plane, whatever nature the house has, that plane will also be of that type, and in the same way in Jain Geography The sun is considered as the plane of heat and the moon as the plane of coolness and an interesting fact about it is that in Jain geography there are two suns and two moons. According to Jainism, man can never go to the Moon or any other planet! Yes, you are listening right, I know that it sounds very different, but it is not a matter that these things are only heard somewhere, this principle is also a reality in Puranas and the map you are seeing above is also Jambudweep. It is from Another special thing in this is that in the middle of Jambudweep, there is Mount Meru, at some distance of which all the things of this universe are present, and according to this, we humans can never reach this sacred plane and all the other things, there is also a solid proof of this. There is a reason which I will tell you later. Yes, I know you will definitely be shocked to hear all this, but it is true and there is also one thing that Jain geography is very different and unique from our modern space science, but I will tell you further in the rest of the information. Who created our Universe according to Jainism No, as per Jainism Universe is eternal. It's neither created nor shall it ever collapse. Now to the question, i.e. what led to the creation (read structure) of the universe ? To keep things simple, we will just concentrate on the middle world where we humans live as it will help us better understand the structure and operations of the universe on the foundations of our current knowledge on the subject. What is outside of the Universe Well, that would define how you describe the universe as. As per Jainism, the universe consists of broadly two regions viz Lokakash and Alokakash 1st region Lokakash is the region that consists of all things made of a material that exhibits the property of Fusion (Pud) and Fission (Gal) which we call matter today. Its this region of the universe that hosts our planet and all other alien habitable planets that support intelligent lifeforms, along with higher and lower planes where demigods and hellish beings reside.
- Portfolio | SPACELIA
Explore the cosmos with us! Dive into our portfolio of space-themed projects, from breathtaking visuals of celestial objects to informative pieces on space exploration and regulations. Portfolio In the portfolio section, you will get the explanation of the topic with images so that you will be able to learn well and will not get bored.
- Hubble's Nebulae | SPACELIA
Hubble's Nebulae Hubble telescope discovered some nebulae here is an image and detail of the nebulae and other information about it. Emission Nebulae Emission nebulae are so named because they emit their own light. This type of nebula forms when the intense radiation of stars within or near the nebula energizes the gas. A star’s ultraviolet radiation floods the gas with so much energy that it strips electrons from the nebula’s hydrogen atoms, a process called ionization. As the energized electrons revert from their higher-energy state to a lower-energy state by recombining with atoms, they emit energy in the form of light, causing the nebula’s gas to glow. A famous example of an emission nebula is the Orion Nebula, a huge, star-forming nebula in the constellation Orion. The Orion Nebula is home to a star cluster defined by four massive stars known as the Trapezium. These stars are only a few hundred thousand years old, about 15-30 times the mass of the Sun, and so hot and bright that they’re responsible for illuminating the entire Orion nebula. But thousands of additional, mostly young stars are embedded in the nebula. The most massive are 50 to 100 times the mass of our Sun. The radiation and solar winds of stars within emission nebulae carve and sculpt the nebula’s gas, creating caverns and pillars but also creating pressures on the gas clouds that can give rise to more starbirth. Reflection Nebulae Reflection nebulae reflect the light from nearby stars. The stars that illuminate them aren’t powerful enough to ionize the nebula’s gas, as with emission nebulae, but their light scatters through the gas and dust causing it to glow ― like a flashlight beam shining on mist in the dark. Because of the way light scatters when it hits the fine dust of the interstellar medium, these reflection nebulae are often bluish in color. A reflection nebula called NGC 1999 lies close to the famous Orion Nebula, about 1,500 light-years from Earth. The nebula is illuminated by a bright, recently formed star called V380 Orionis, and the gas and dust of the nebula is material left over from that star’s formation. A second well-known reflection nebula is illuminated by the Pleiades star cluster. Most nebulae around star clusters consist of material that the stars formed from. But the Pleiades shines on an independent cloud of gas and dust, drifting through the cluster at about 6.8 miles/second (11 km/s). Planetary Nebulae When astronomers looked at the sky through early telescopes, they found many indistinct, cloudy forms. They called such objects “nebulae,” Latin for clouds. Some of the fuzzy objects resembled planets, and these earned the name “planetary nebulae.” Today these nebulae keep the name, but we know they have nothing to do with planets. Planetary nebulae form during the death of low-mass to medium-mass stars. When such stars die, they expel their outer layers into space. These expanding shells of gas form a huge variety of unique shapes ― rings, hourglasses, rectangles, and more ― that show the complexity of stellar death. Astronomers are still studying how these intricate shapes form at the end of a star’s life. As the star casts off its outer layers, it leaves behind its core, which becomes a white dwarf star. White dwarf stars are objects with the approximate mass of the Sun but the size of Earth, making them one of the densest forms of matter in the universe after black holes and neutron stars. The white dwarf star’s ultraviolet radiation ionizes the gas of the planetary nebula and causes it to glow, just as stars do in emission nebulae. Our Sun is expected to form a planetary nebula at the end of its life. Supernova Remnants Not all stars die gently, exhaling their outer layers into space. Some explode in a supernova, flinging their contents into space at anywhere from 9,000 to 25,000 miles (15,000 to 40,000 kilometers) per second. When a star has a lot of mass ― at least five times that of our Sun ― or is part of a binary system in which a white dwarf star can gravitationally pull mass from a companion star, it can explode with the brightness of 10 billion Suns. Supernova remnants consist of material from the exploded star and any interstellar material it sweeps up in its path. The new debris from the explosion and material ejected by the star earlier in its life collide, heating up in the shock until it glows with x-rays. Supernova remnants’ glow can also be powered by the stellar wind of a pulsar ― a rapidly spinning neutron star created from the core of the exploded star. The pulsar emits electrons that interact with the magnetic field it produces, a process called synchrotron radiation, and emits X-rays, visible light and radio waves. Absorption Nebulae Absorption nebulae or dark nebulae are clouds of gas and dust that don’t emit or reflect light, but block light coming from behind them. These nebulae tend to contain large amounts of dust, which allows them to absorb visible light from stars or nebulae beyond them. Astronomer William Herschel, discussing these seemingly empty spots in the late 1700s, called them “a hole in the sky.” Included among absorption nebulae are objects like Bok globules, small, cold clouds of gas and dense cosmic dust. Some Bok globules have been found to have warm cores, which would be caused by star formation inside, and further observation has indicated the presence of multiple stars of varying ages, suggesting a slow, ongoing star formation process. The Crab Nebula is an example of a supernova remnant. The explosion that created it in the year 1054 was so bright that for weeks it could be seen even in the daytime sky, and it was recorded by astronomers across the world. The material from the star is still rushing outward at around 3 million mph (4.8 million kph). Hubble's Nebulae Gallery
- Blackhole Information Paradox | SPACELIA
The Black Hole Information Paradox is a long-standing problem in theoretical physics and astrophysics, concerning the conservation of information in the presence of black holes, which are regions of spacetime where gravity is so strong that not even light can escape from them. The paradox arises from the clash between the principles of quantum mechanics and general relativity. Blackhole Information Paradox The Black Hole Information Paradox is a long-standing problem in theoretical physics and astrophysics, concerning the conservation of information in the presence of black holes, which are regions of spacetime where gravity is so strong that not even light can escape from them. The paradox arises from the clash between the principles of quantum mechanics and general relativity. In classical physics, black holes are described by solutions to Einstein's field equations of general relativity, which predict that anything that falls into a black hole will be irretrievably lost behind its event horizon, a boundary beyond which nothing can escape. This implies that any information about the matter that formed the black hole, such as its mass, charge, and angular momentum, is lost to the outside universe. However, according to the principles of quantum mechanics, information cannot be destroyed. Instead, it should always be possible, in principle, to trace the evolution of a quantum system backwards in time and reconstruct the initial state from the final state. This principle is known as unitarity. The paradox arises because the classical description of black holes seems to violate the principles of quantum mechanics. If information is lost behind the event horizon, then the evolution of a black hole's state seems to violate unitarity, leading to a breakdown of quantum mechanics. Various proposed solutions to the Black Hole Information Paradox have been put forward over the years, but none have been universally accepted. Some of these proposals include: Hawking Radiation and Information Loss: Stephen Hawking proposed that black holes emit radiation (now known as Hawking radiation) due to quantum effects near the event horizon. This radiation carries away energy from the black hole, eventually causing it to evaporate completely. Initially, it was believed that this process led to the loss of information, but later work suggested that information might be encoded in the radiation, leading to the idea of "black hole complementarity" or the "firewall paradox." Firewall Paradox: Proposed as a resolution to the information paradox, the firewall paradox suggests that an observer falling into a black hole would encounter a firewall of high-energy particles at the event horizon, contradicting the smooth spacetime predicted by general relativity. This proposal has sparked significant debate within the physics community. Holographic Principle and AdS/CFT Correspondence: The holographic principle suggests that all the information contained within a region of space can be encoded on its boundary. The AdS/CFT correspondence, a conjectured equivalence between certain gravitational theories and quantum field theories, has been used to study black hole physics in this context, offering potential insights into the resolution of the information paradox. Quantum Gravity and String Theory: Some researchers believe that a theory of quantum gravity, which successfully unifies quantum mechanics and general relativity, could resolve the information paradox. String theory is one candidate for such a theory, but it remains highly speculative and has not yet been definitively confirmed. Information Preservation: Other proposals suggest that information may somehow be preserved in a subtle way within the black hole or its radiation, allowing for the eventual recovery of the initial state.Despite decades of research, the Black Hole Information Paradox remains unsolved, and it continues to be a topic of active investigation and debate within the physics community. Resolving this paradox is crucial for developing a complete understanding of the fundamental laws governing the universe. Chat Section If you have any question ask me here.... Other Articles...... Theories Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1 Today Onward Theory Parallel World Travel We are our GOD Inflationary Cosmology
- Osiris-REx Mission | SPACELIA
Osiris - REx Mission Remember that scene in "Armageddon" where Bruce Willis blows up a giant asteroid on a collision course with Earth? Thankfully, Bennu, a real near-Earth asteroid, isn't hurtling towards us quite that aggressively. But it is still a celestial wanderer with a thrilling story, and the audacious mission of the OSIRIS-REx spacecraft to unlock its secrets. Bennu: A Time Capsule From the Solar System's Dawn Imagine a colossal rock, bigger than the Empire State Building, older than the dinosaurs, and potentially holding the key to the origins of life on Earth. That's Bennu, a carbonaceous chondrite asteroid formed in the fiery crucible of the early solar system, some 4.5 billion years ago. Unlike its metallic or rocky siblings, Bennu is a carbonaceous treasure trove, its dark, diamond-like surface coated in organic molecules and minerals untouched for eons. Studying these pristine materials is like opening a time capsule, offering scientists a glimpse into the conditions that gave birth to our solar system and the potential for life beyond Earth. OSIRIS-REx: A Touch in the Void In 2016, NASA embarked on a mission as daring as it was groundbreaking: to rendezvous with Bennu, study its surface, and collect a precious sample. The OSIRIS-REx spacecraft, a technological marvel resembling a robotic octopus, embarked on a years-long journey, navigating the gravitational dance of the solar system and finally arriving at Bennu in 2018. For two years, OSIRIS-REx orbited Bennu like a celestial dance partner, mapping its surface in exquisite detail, revealing a world of craters, boulders, and even a mysterious dark plume erupting from its surface. Then, in October 2020, came the moment of truth: the Touch and Go Sample Acquisition Mechanism (TAGSAM) extended from the spacecraft, gently kissed Bennu's surface, and collected a handful of precious regolith (loose, rocky material) – Bennu's ancient secrets scooped into a cosmic treasure chest. Mission Accomplished: Bennu's Treasures Return to Earth After successfully completing its mission, OSIRIS-REx began its long journey back to Earth, carrying its priceless cargo. On September 24, 2023, the spacecraft hurtled through the atmosphere, releasing the sample capsule over the Utah desert. This precious payload, containing millions of Bennu particles, landed safely, marking a historic moment in space exploration. Bennu's Secrets Unlocked: A New Chapter in Science Scientists around the world are now eagerly analyzing the Bennu sample, hoping to answer some of humanity's most profound questions. What were the building blocks of the solar system? How did asteroids contribute to the formation of planets? Could Bennu's organic molecules hold the key to the origins of life? The answers lie within the grains of Bennu's regolith, waiting to be deciphered. This mission is not just about understanding the past; it's about preparing for the future. Studying Bennu's composition and trajectory could help us develop strategies to deflect asteroids in case they ever pose a threat to Earth. Bennu: More Than Just a Rock, a Story of Our Universe The story of Bennu is a testament to human ingenuity and our insatiable curiosity about the universe. It's a reminder that even in the vast emptiness of space, there are treasures to be found, stories to be told, and mysteries waiting to be unlocked. With every grain of Bennu analyzed, we expand our understanding of the cosmos and our place within it. Who knows, maybe one day, Bennu won't just be a celestial bullet dodged, but a key to unlocking the secrets of life itself. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Chandra X-Ray Observatory
- Hubble's Star Clusters | SPACELIA
Hubble's Star Clusters Billions of trillions of stars illuminate the galaxies of our universe. Each brilliant ball of hydrogen and helium is born within a cloud of gas and dust called a nebula. Deep within these clouds, knots can form, pulling in gas and dust until they become massive enough to collapse under their own gravitational attraction. Open Clusters Open clusters contain between a few dozen and a few thousand stars, all formed from the same initial cloud of gas and dust. The density of stars is low enough in these clusters that individual stars are visible with a telescope, or sometimes the unaided eye, giving them an “open” appearance. Most open clusters reside in the arms of spiral galaxies, and their stars are usually relatively young. Their shape is more irregular than spherical, with large amounts of gas between the stars. Over time, as these clusters rotate around a galaxy, gravitational disruptions from passing cosmic objects can cause the stars to disperse. The Milky Way is home to more than a thousand of these clusters, and even our Sun may have formed in an open cluster. Globular Clusters Embedded Clusters Globular clusters are much larger and denser than open clusters, containing several thousand to millions of stars all formed from a shared nebula. Unlike open clusters, the density of stars at their centers is so high that individual stars are hard to discern, even with powerful telescopes. Globular clusters lie on the dusty outskirts of galaxies and their stars are older than those in open clusters. In fact, globular clusters contain some of the oldest known stars in a galaxy. Because old stars tend to have a reddish glow, globular clusters generally appear redder than open clusters. The large number of stars in a relatively small area causes the shape of a globular cluster to appear spherical, as stars’ intense gravitational attraction pulls them together. These gravitational ties grant globular clusters more stability than open clusters, helping them keep their structure instead of breaking up over time. The Milky Way alone has over 150 globular clusters, and our nearest neighboring galaxy Andromeda has over 400. Embedded clusters are a precursor to open and globular clusters. As the youngest type of star cluster, they contain newly born and forming stars surrounded by cosmic gas and dust. As with open and globular clusters, all of the stars formed from the same initial nebula. Embedded clusters are likely the basic unit of star formation since a significant fraction of all stars form within them. Once star formation ends, embedded clusters resemble open clusters, but are often disrupted by passing objects due to their weaker gravitational bonds. The embedded phase typically lasts between 2-7 million years. Since embedded clusters are heavily obscured by dust, they are rarely observed in visible wavelengths of light. However, Hubble’s infrared instruments can detect the longer wavelengths of infrared light that aren’t as easily scattered by clouds of gas and dust. Hubble’s unique capabilities are essential for learning more about these young clusters.
- Today Onward Theory | SPACELIA
What is Today Onward Theory?, This is a theory that will shock you, I will explain this theory today but only if you can relate to it then you will be able to understand it, I have given my strong point of view in this. Today Onward Theory What is Today Onward Theory?, This is a theory that will shock you, I will explain this theory today but only if you can relate to it then you will be able to understand it, I have given my strong point of view in this. Over View.... What is Today Onward Theory?, This is a theory that will shock you, I will explain this theory today but only if you can relate to it then you will be able to understand it, I have given my strong point of view in this. What is science?, Have we made much progress in science?, How will science be in the future?, Can we become a Type 2 civilization?, you will get the answers to these questions later, but let me say one thing that if today's From the point of view, science has not done anything, according to scientists, if we want to become a Type 2 civilization, then we still have a lot of research left to do, now you will say that we have discovered so much in space science, how much more?, let me tell you. We are not going to become great by going to space or going to the moon 2-3 times, because we do not even know how to take people out of the solar system, we have not even reached Mars, nor have we established our colony on any planet. If it has been made, then how can we say that science has progressed a lot. One step towards the future Now if you say, what do we have to do so that we can progress?, and where is science today? You will get answers, all your questions will be answered, if you have any question after reading this theory then you can tell me in the chat box below, I will answer all your questions. So what is my point of view, I will tell you, if we have shared something before, then where are we now?, right now we have definitely made a lot of progress in science but that progress is not enough, if we want to become a Type 2 civilization then there is still a lot of work to be done. The journey is still left, all the space we have traveled in comes within the solar system only, we have only taken people to the moon, and for the last many years we have not even been able to send humans again, if you look at science. It has made considerable progress in the last 100 years, but is it enough? No, if we want to reach Alpha Centauri, the system we have today, it will take thousands and millions of years, and we will never be able to reach the nearest galaxy. Then how can we say that we can become a Type 2 civilization? Now I will explain my point of view to you by listening to a story, "Once everyone was present in the king's court, then the king said to a minister that I am very happy with your work and want to give you a gift, tell me what do you want, minister. He was as intelligent as all of you, he said, King, I don't need much, just one square of Chokha in the first square of a chess board and its double in the next one, give me as many Chokha's dens as will be made in the last square, King. The king ordered to give him whatever he wanted, then a servant came and said that the king has asked for so many grains that there are not so many of them in our entire kingdom, then the king was very impressed by him, you will think how many grains would have been there which the king would have given. If I couldn't give it, then I have counted it for you all, and it comes to more than 2305843007575253120, and this is so much that its count has not been discovered till date, and this is exactly how our space science is progressing. , How progress is doubling every day, NASA has been established for only about 70 years and how many discoveries have been made in these 70 years, ISRO was also established 60 years ago and how far it has progressed, in the coming 10- Science would have advanced a lot in 20 years, just take the example of A.I. Most of the people would not even know about A.I before 2020 and it has increased in just three years. In this way our science is progressing and will continue to do so. Chat Section....
- Hubble's Nebula Discovery | SPACELIA
Hubble's Nebula Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Beyond the solar system, Hubble has studied star formation and death in our Galaxy and nearby galaxies. As a first example, this image of the Carina Nebula was released for Hubble’s 17th anniversary. At the time (2007), it was one of the largest panoramic images ever taken with Hubble’s Advanced Camera for Surveys. It is a 50-light-year-wide view of the central region of the Carina Nebula, where a maelstrom of star birth -- and death -- is taking place. The nebula is sculpted by the action of outflowing winds and scorching ultraviolet radiation from the monster stars that inhabit this inferno. The stars are shredding the surrounding material that is the last vestige of the giant cloud from which the stars were born. The immense nebula contains at least a dozen brilliant stars that are roughly estimated to be at least 50 to 100 times the mass of our Sun. The most unique and opulent inhabitant is the star Eta Carinae, at far left. Eta Carinae is in the final stages of its brief and eruptive lifespan, as evidenced by two billowing lobes of gas and dust that presage its upcoming explosion as a titanic supernova. The outflow in the Carina region started three million years ago when the nebula's first generation of newborn stars condensed and ignited in the middle of a huge cloud of cold molecular hydrogen. Radiation from these stars carved out an expanding bubble of hot gas. The island-like clumps of dark clouds scattered across the nebula are nodules of dust and gas that are resisting being eaten away by photoionization. The blast of stellar winds and blistering ultraviolet radiation within the cavity is now compressing the surrounding walls of cold hydrogen. This is triggering a second stage of new star formation. Carina is about 7,500 light years away (2,300 parsecs). Using Hubble’s newer cameras provides a stunning image of an old favorite. This image of the Pillars of Creation in the Eagle Nebula has twice the resolution, several times the area, and more than twenty times the pixels of the 1995 version. The image was obtained with the optical bands of the Wide Field Camera 3 (WFC3) in 2015. This taller image includes the gas at the bottom of the pillars being blown down and trailing away. Numerous small features indicate the pervasiveness of pillars of every size in this region. This is the first of a sequence of three images to be shown relatively rapidly. We begin the anniversary year by revisiting a legendary image: the “Pillars of Creation” in the Eagle Nebula. This image was the first Hubble image to fascinate the public, and still remains one of Hubble’s most popular images. It was obtained in 1995 with the Wide Field and Planetary Camera 2 (WFPC2). Inside the gaseous towers, which are light-years long, the interstellar gas is dense enough to collapse under its own weight, forming young stars that continue to grow as they accumulate more and more mass from their surroundings. The object is 6,500 light years away (2,000 parsecs). Like the pillars in Carina, these dark clouds are being eroded by winds and radiation from hot, young stars. The stars forming within the pillars give them their “creation” nickname. Using the infrared capabilities of Wide Field Camera 3 (WFC3), one can see the pillars in a whole new light. Much of the gas of the nebula is transparent to the longer wavelengths of infrared light, revealing a tremendous number of stars. The seemingly solid, visible-light pillars are shown in the infrared to be a combination of dense clouds and the shadows they cast behind them. Such high resolution visible light and infrared light comparisons point toward a bright future when Hubble and James Webb Space Telescope observations can be similarly compared and contrasted. This is the first of two images to be shown of the Horsehead Nebula. The transition should be done without too much delay to the next image. In 2001, after asking the public which object should be observed, the Hubble Heritage Project took this image of the Horsehead Nebula with the Wide Field and Planetary Camera 2 (WFPC2). While the nebula makes for a striking silhouette, the dark cloud is short on detail in a visible light image. The small inset shows a ground-based optical image of the surrounding region. The distance to the object is about 1,200 light years (490 parsec). Using the enhanced infrared sensitivity of Wide Field Camera 3, Hubble was able to get much more detail in this 2013 infrared portrait of the Horsehead. The relatively featureless dark clouds are transformed into a glowing gaseous landscape that almost appears three-dimensional in the image. There are videos that zoom into the nebula and also show the 3D effect. This image of the Orion Nebula shows the discovery of debris disks – planetary systems in formation around newly created stars. As the gas and dust collapses under gravity, stars are born, and in the process, disks and planets often form out of the residual material. The distance to the Orion Nebula is 1,500 light years (460 parsecs). http://hubblesite.org/newscenter/archive/releases/1995/45/ A beautiful composite image of the Orion Nebula from both the HST ACS and the ESO MPI at La Silla is available: http://hubblesite.org/newscenter/archive/releases/2006/01/ Supplemental Movies: Orion Fly through: http://hubblesite.org/newscenter/archive/releases/2001/13/video/a/ Zoom into Orion: http://hubblesite.org/newscenter/archive/releases/2001/13/video/a/ At the heart of this star-forming region lies star cluster NGC 602. It is a cluster of newly formed stars that are blowing a cavity in the center of a star-forming region in the Small Magellanic Cloud, a companion galaxy to our own Milky Way. The high-energy radiation blazing out from the hot young stars is sculpting the inner edge of the outer portions of the nebula, slowly eroding it away and eating into the material beyond. The diffuse outer reaches of the nebula prevent the energetic outflows from streaming away from the cluster. Ridges of dust and gaseous filaments are seen surrounding the cluster. Elephant trunk-like dust pillars point towards the hot blue stars and are telltale signs of their eroding effect. It is possible to trace how the star formation started at the center of the cluster and propagated outward, with the youngest stars still forming today along the dust ridges. The Small Magellanic Cloud, in the constellation Tucana, is roughly 200,000 light-years from the Earth. Its proximity to us makes it an exceptional laboratory to perform in-depth studies of star formation processes and their evolution in an environment slightly different from our own Milky Way. This image was taken with Hubble’s Advanced Camera for Surveys. http://hubblesite.org/newscenter/archive/releases/2007/04/ X-ray from Chandra plus Hubble observations: http://hubblesite.org/newscenter/archive/releases/2013/17/image/a/ The Cat’s Eye Nebula, formally cataloged NGC 6543, was one of the first planetary nebulae to be discovered. Hubble observations show it is one of the most complex such nebulae seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers, which eventually form bright nebulae with amazing and confounding shapes. This image taken with Hubble's Advanced Camera for Surveys (ACS) reveals the full beauty of a bull's eye pattern of eleven or even more concentric rings, or shells, around the Cat's Eye. Each 'ring' is actually the edge of a spherical bubble seen projected onto the sky — that's why it appears bright along its outer edge. Observations suggest the star ejected its mass in a series of pulses at 1,500- year intervals. These convulsions created dust shells, each of which contains as much mass as all of the planets in our solar system combined (still only one percent of the Sun's mass). These concentric shells make a layered, onionskin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each skin layer is discernible. The Nebula is 3000 light years (1000 parsecs) away. This beautiful image was taken soon after Servicing Mission 4 as part of the release announcing Hubble’s return to science operations. This planetary nebula is the material blown off of a dying star. A disk around the center restricts the outflows into two oppositely directed lobes, creating a distinct resemblance to a butterfly. Although named the Bug Nebula, many began calling this object the Butterfly Nebula after this image was released. The Crab Nebula derived its name from its appearance in a drawing made by Irish astronomer Lord Rosse in 1844, using a 36-inch telescope. The Crab Nebula is a six-light-year-wide expanding remnant of a star's supernova explosion. Japanese and Chinese astronomers recorded this violent event nearly 1,000 years ago in 1054, as did -- almost certainly -- Native Americans. This composite image was assembled from 24 individual exposures taken with the Hubble Space Telescope’s Wide Field and Planetary Camera 2 in October 1999, January 2000, and December 2000. The orange filaments are the tattered remains of the star and consist mostly of hydrogen. The rapidly spinning neutron star embedded in the center of the nebula is the dynamo powering the nebula's eerie interior bluish glow. The blue light comes from electrons whirling at nearly the speed of light around magnetic field lines from the neutron star. The neutron star, like a lighthouse, ejects twin beams of radiation that appear to pulse 30 times a second due to the neutron star's rotation. A neutron star is the crushed ultra-dense core of the exploded star. This shell, or bubble, is the result of gas that is being shocked by the expanding blast wave from a supernova. Notice its completely different appearance from the Crab Nebula in the previous slide. Called SNR 0509-67.5 (or SNR 0509 for short), the bubble is the visible remnant of a powerful stellar explosion in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light-years from Earth. Ripples in the shell's surface may be caused by either subtle variations in the density of the ambient interstellar gas, or possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 11 million miles per hour (5,000 kilometers per second). http://hubblesite.org/newscenter/archive/releases/2010/27/ Supplemental Movie: 3D look at SN remnant http://hubblesite.org/newscenter/archive/releases/2010/27/video/a/
- Forum | SPACELIA
若要測試此功能,請造訪即時網站。 所有文章 類別 我的文章 Forum Welcome! Have a look around and join the discussions. 排序方式: 最近活動 追蹤所有類別 Create New Post Aagam sanghavi Welcome to the Forum 在 General Discussion Share your thoughts. Feel free to add GIFs, videos, hashtags and more to your posts and comments. Get started by commenting below. 0 則留言 0 2023年11月08日 按讚 0 則留言 留言 Aagam sanghavi Forum rules 在 General Discussion We want everyone to get the most out of this community, so we ask that you please read and follow these guidelines: • Respect each other • Keep posts relevant to the forum topic • No spamming 0 則留言 0 2023年11月08日 按讚 0 則留言 留言 Aagam sanghavi Introduce yourself 在 General Discussion We'd love to get to know you better. Take a moment to say hi to the community in the comments. 0 則留言 0 2023年11月08日 按讚 0 則留言 留言 Forum - Frameless
- The Dream Mission | SPACELIA
The Dream Mission My greatest experience of dream Mars mission. Overview People must have had many dreams and those dreams would be very unique, but my dream is very unique. Today I will share with you this dream journey full of very interesting and adventures. In this dream of mine, I have done the complete mission of Mars and there are many twists in that too, which I will tell you further in this article. The article is The Dream Mission Dream Mars Mission It was night time, I was tossing and turning on the bed trying to sleep, I was not able to sleep because of fever, I went to 9, I fell asleep with great difficulty, but at 2:30 suddenly I woke up because I Weird dreams of mars were coming, sometimes take off, sometimes horrible dreams of crash on mars, and one side had fever, sleep was gone, I was having dreams even while awake, I mean call it a dream or what it was, I don't know. No, but that picture was running in my mind, just such strange things were visible in front of my eyes, I was trying to sleep, but I was not able to sleep. I felt as if all this was happening in reality, dreams come during sleep but I was having dreams even with my eyes open, this experience was the most unique and a little difficult in my life. I cannot describe that moment clearly, but in a few moments, all those things were coming before my eyes, sometimes the scenes of my plane crashing and getting lost in space were coming to the fore, along with me there were other scenes of mine. There were astronauts who came with me in this mission, there was also a scene in which our return vehicle from Mars breaks down and we are fixing it, there was also a scene in which I am in space and I hear the voices of my companions. I heard that people are calling my name, I am not reacting, there is darkness in front of my eyes, my eyes are half open and closed, it seems as if I am going to faint in some time, even my space suit will not take me much longer. I won't be able to save myself, I am just wandering in this lonely and quiet space. The next moment my crew is in front of me. This experience was very exciting and memorable, I am sitting in our space craft, we probably Have forgotten the direction, coordinates are in my ears and only computer screens are visible in front of me, there are many difficulties coming in this journey and we are struggling with them, I was not able to see this scene clearly but in some time it It was appearing in front of my eyes, I am out of control, I am not able to move, what to do, the path is not swelling, the bass is moving round and round and I don't know in any direction, I am not in control, there is chaos all around, NASA is helping us, we are trying to control it somehow, some noises are coming all around and it seems as if we are about to crash, some society is not coming, there are all the screens in the evening which have all the information. And controls too, and only then we lose everything and crash, when we open our eyes, everything is scattered, some have holes in their suits, some are badly hurt, all these things are happening while the eyes are in it. Then it opens, now it was around 4 o'clock, these strange dreams were happening again and again, on top of that, I was running fever, my condition was bad, sometimes I used to sit and sometimes I tried to sleep, the dreams were not allowing me to sleep, and so on. While all this is happening, I catch my eye, yes a lot more happened in between but I will tell you about it later, when I woke up, it was already morning, there was a different freshness in this morning but I was completely tired, quite a unique experience which It happened that the government spends crores of rupees to reach Mars but I enjoyed the journey to Mars by eating only 2-3 sweets. This whole article is based on a real dream experience. Its second part will also come soon. Other Articles...... Dark Energy Multiness of Thoughts Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1
- Articles | SPACELIA
Research Papers Articles STAR VFTS102 We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s−1 and probably as large as 600 km s−1; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s−1 from the mean for 30 Doradus, suggesting that it is a runaway. View More Dark Energy In the late 1990s, astronomers found evidence that the expansion of the universe was not slowing down due to gravity as expected. Instead, the expansion speed was increasing. Something had to be powering this accelerating universe and, in part due to its unknown nature, this “something” was called dark energy. View More Zombie Planet Zombie planets, also known as "pulsar planets" or "planets around pulsars," are a fascinating and relatively rare astronomical phenomenon. View More The Dream Mission People must have had many dreams and those dreams would be very unique, but my dream is very unique. Today I will share with you this dream journey full of very interesting and adventures. In this dream of mine, I have done the complete mission of Mars and there are many twists in that too, which I will tell you further in this article. The article is The Dream Mission View More Creation of Mind Loop What we doing, what we experiencing, what we thinking is a creation of mind, and it's just a thoughts View More Answer of the Arecibo Message Whether real, mysterious, or fictional, these messages symbolize humanity’s deep yearning to connect with the unknown. The Arecibo Message demonstrates our technological advancements and hope for contact. The Chilbolton Message, regardless of its authenticity, underscores our fascination with the possibility of extraterrestrial communication. Meanwhile, Contact invites us to imagine the emotional and philosophical weight of finding we are not alone. View More Aditya - L1 View More
- Parallel World Travel | SPACELIA
We have heard a lot about time travel, it feels good to hear it but only in imagination and theories, we already know the rest of the reality, but today we have brought another theory in front of you which can happen in the past. There is a thesis based on the above but yes, you will definitely feel happy after reading it. Parallel World Travel We have heard a lot about time travel, it feels good to hear it but only in imagination and theories, we already know the rest of the reality, but today we have brought another theory in front of you which can happen in the past. There is a thesis based on the above but yes, you will definitely feel happy after reading it. Over View.... So let me give you an overview of this theory, in this we have tried to understand how time travel can happen in the past, because we all know that if we want, we can do it in the future, but time can never shrink. This is why it is impossible to travel in the past, but if we say that it is possible and that anti-reaction will increase your interest, then if we have to travel in time then it is possible only in a parallel universe. But we cannot understand the parallel world well yet, so we will have to create this theory accordingly, then the time travel that will happen will happen in the parallel world that we have created with our own thoughts. Because till now the parallel universe has remained only a thesis. So stick to this theory and the whole society will follow you. If you have any questions, you can tell me in the chat box below, I will definitely answer you. Lets begin the journey After starting this I want to ask you question Is time travel in past can be possible because if we do there would be so many paradoxes we have to face like Grandfather paradoxes and Butterfly Effect. If you don’t know about these then might be you think that what’s these..? Grandfather Paradox- Let’s suppose you have a time machine and you traveled in past And unfortunately because of You your Grandfather got killed in his childhood in the age of 6. Then what happen? Just think logically that if your Grandfather never married with any woman then your father will not birth in this world and if he don’t birth in this world You might be not birth in the world So in present if you don’t exists how did you traveled in past and killed your Grandfather? Tricky right… You can read About the Butterfly effect By yourself…. And cause of we are humans and we often made mistakes we can say that there will be a huge chance that we messed up past.. So with this, This is confirm that we cannot travel in past. Even not in the theory. But we are humans and we are free to think and assume don’t we? Of course many scientists claim that past time travel isn’t possible. So my theory is What if we do travel in past and change it but in result nothing will change in our world cause of our mistake or action, Note that I said in our world. As we know we are not alone in the universe there can be a lot of creature like us or advance from us or lower from us in different sector. And there would be a chance that there would be an parallel universe like us. Parallel Universe is a universe which had many similarities and many differences too. This is a hypothesis universe but it can be true. My theory is a mixture of parallel universe and time travel. There are huge chance that we humans will be able to travel in past but the problem will be we can only observe them but can’t change anything if we dare and try to change anything then The past that we traveled will become a parallel universe and continuous it’s own different future than us. In short if we do the grandfather paradox there then even if we kill the grandfather we will be secure but in that died grandfather universe we actually never be able to exists there. It might be the reason why the party of the time travelers by Stephen hawking was empty cause maybe the travelers don’t want to change the universe. With this almost every paradox can be solved. And whenever we felt Déjà vu there would be the cause of we already felt it on parallel universe and we are connected by that ourselves from that universe to this Universe.. Every action has an appropriate reaction We all know that every action has an appropriate reaction, so you must be thinking that you have said that time travel will happen in the past but not in our parallel universe, but will it have any impact in our universe? , Can it have any opposing impact? Well, we can think something now, but because we have given you this universe, it must have been created by imagination and if we do anything in it, we will not see any effect on the present. We will not get it, that is a different matter that this is just our thought, so maybe there can be some reaction. You can tell in the chat box given below whether you have any idea whether this could be a reaction? Chat Section If you have any question ask me here....
- KEPLER-186f | SPACELIA
Kepler-186f is an Earth-sized exoplanet located 500 light-years away in the constellation Cygnus. It orbits a red dwarf star, Kepler-186, within its habitable zone, where conditions might allow liquid water to exist. This discovery sparked interest in the search for potentially habitable exoplanets and raised questions about the possibility of extraterrestrial life beyond our solar system. However, limited data about its atmosphere and surface make it challenging to assess its true habitability. KEPLER-186f Kepler-186f is an Earth-sized exoplanet located 500 light-years away in the constellation Cygnus. It orbits a red dwarf star, Kepler-186, within its habitable zone, where conditions might allow liquid water to exist. This discovery sparked interest in the search for potentially habitable exoplanets and raised questions about the possibility of extraterrestrial life beyond our solar system. However, limited data about its atmosphere and surface make it challenging to assess its true habitability. 1. Characteristics of Kepler-186f: Size: Kepler-186f is considered an Earth-sized exoplanet, with an estimated radius about 1.1 times that of Earth. This makes it one of the few exoplanets discovered at the time that was close in size to our own planet. Parent Star: Kepler-186f orbits a red dwarf star known as Kepler-186, which is cooler and smaller than our Sun. Kepler-186 is classified as an M-dwarf star. Orbit: Kepler-186f is in a relatively tight orbit around its host star, completing one orbit approximately every 130 Earth days. It receives about a third of the energy from its star compared to Earth's energy from the Sun. Habitable Zone: One of the most intriguing aspects of Kepler-186f is its location within the habitable zone (Goldilocks zone) of its star. The habitable zone is the region around a star where conditions might be suitable for liquid water to exist on the planet's surface, which is a key factor for the potential development of life as we know it. 2. Atmosphere of Kepler-186f: Information about the specific composition and characteristics of Kepler-186f's atmosphere is not currently known. Detecting and analyzing the atmospheres of exoplanets, especially those as distant as Kepler-186f, is a challenging task that often requires advanced telescopes and instruments. Detailed studies of an exoplanet's atmosphere can provide important insights into its potential habitability. 3. Potential for Extraterrestrial Life: Kepler-186f's location within the habitable zone of its star makes it an intriguing candidate for the potential existence of extraterrestrial life. The habitable zone represents the region where conditions might be right for liquid water to exist on the planet's surface, which is a crucial ingredient for life as we know it. However, the presence of liquid water alone does not guarantee the existence of life. Other factors, such as the composition of the planet's atmosphere, the presence of essential nutrients, geological activity, and the stability of the climate, also play vital roles in determining habitability. Detecting signs of life on Kepler-186f or any exoplanet is extremely challenging and would likely require advanced telescopes capable of analyzing the planet's atmosphere for biomarkers (e.g., oxygen, methane) or other potential signs of biological activity. Kepler-186f and Earth have some similarities, such as their Earth-sized classification and the fact that Kepler-186f is located within the habitable zone of its star. However, they also have several key differences. Here's a comparison between Kepler-186f and Earth: 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms. Kepler-186f: Kepler-186f is considered an Earth-sized exoplanet, with an estimated radius about 1.1 times that of Earth. Its exact mass is not precisely known but is believed to be greater than Earth. 2. Parent Star and Orbit: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). It completes one orbit around the Sun in approximately 365.25 days. Kepler-186f: Kepler-186f orbits a red dwarf star known as Kepler-186, which is cooler and smaller than our Sun. Its orbit around Kepler-186 takes approximately 130 Earth days. 3. Habitable Zone: Earth: Earth is located within the habitable zone of the Sun, where conditions for liquid water are ideal for the existence of life. Kepler-186f: Kepler-186f is also located within the habitable zone of its star, Kepler-186. This means that, theoretically, it could have conditions suitable for liquid water to exist on its surface. 4. Atmosphere: Earth: Earth has a diverse and life-sustaining atmosphere composed primarily of nitrogen (about 78%) and oxygen (about 21%), with trace amounts of other gases. The atmosphere plays a critical role in regulating temperature and supporting life. Kepler-186f: The specific composition and characteristics of Kepler-186f's atmosphere are not currently known. Detailed studies are needed to determine the presence and properties of its atmosphere. 5. Surface Conditions: Earth: Earth has a variety of surface conditions, including continents, oceans, and various climate zones. It supports a wide range of life forms and ecosystems. Kepler-186f: The specific surface conditions of Kepler-186f, such as the presence of oceans, continents, or any geological activity, are not known due to limited observational data. 6. Potential for Extraterrestrial Life: Earth: Earth is known to host a diverse array of life, from microorganisms to complex multicellular organisms, including humans. Kepler-186f: While it is located within the habitable zone and is considered an interesting candidate for further study, the presence of extraterrestrial life on Kepler-186f is purely speculative at this point. It is one of the exoplanets that has garnered attention for its potential habitability. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1
- Creation of Mind Loop | SPACELIA
In this article, I will tell you a mindset that will shock you. After a lot of deep thinking and hard work, I am writing this article. This article is basically about our mind, what is it?, how is it?, what is the impact?, I will tell you all this further in the article, so reading the entire article will be very interesting and mind opening. Creation of Mind Loop This article is about mind and power of mind and totally different mindset which blows your mind. Introduction In this article, I will tell you a mindset that will shock you. After a lot of deep thinking and hard work, I am writing this article. This article is basically about our mind, what is it?, how is it?, what is the impact?, I will tell you all this further in the article, so reading the entire article will be very interesting and mind opening. And if you have not signed up, then do it quickly and subscribe so that you can be the first to get whatever new update comes, keep watching, and stay tuned. Unique Mindset I believe that whatever we are seeing or thinking is the work of our mind, it could just be our desire to think too far or the desire to get fame. And I am not only saying this, behind this also I have some strong point of view, which I will explain to you further. So first of all you clear this that what I want to say and what is my point, I am simply saying that we are making new theories in the universe and all these discoveries etc. are all just a mindset of ours. There is potential and all the theories that have been made are here. Understand that today I have given you a strong statement and someone else has modified and presented the same statement in a better way, this is the theory. I am not saying at all that all this is wrong, just till this article you should believe that all this is the power of our imagination. Like I got an idea today that this should also be there in the universe, then my mind will start thinking more about that thing which is not there, it will start creating itself and will force me to think or to believe that My opinion is absolutely correct. This thing cannot be understood by explaining it further but perhaps if you have had such an experience then you can understand it better. The simple thing is that it could just be an illusion or overthinking of the retard. You have understood all these things, but you will say that this is just your assumption, there is no proof, I will give you that too. You must have heard about the double slit experiment, it also has the same thing. And there is a theory in which scientists are saying that the world around us is just a binary code. When you focus on that thing then it comes into real state and back it becomes virtual, so let me tell you in a similar theory. What I have created may just be my idea or my overthinking and it is also possible that I may get trapped in the loop of my own theory. The name of this theory is - "Multiplicity of Thoughts", I have given a short explanation of it in the theory section, but I felt that this topic can be very interesting, hence I am writing a special article on it. So as you experience all these things, it creates a virtualness. You must decide once to think about any domain, think something or the other that you want to be this saree, if you keep thinking in your mind for 10-20 days, then you will also feel its effect. You must have heard about the Law of Attraction, so it also adds more depth to my theory. Scientist also proved that our soul can also travel in sleeping mode, so my conclusion of this theory comes from all these points. It was only till now and I know that you will have many questions, so you can ask me through personal mail or chat on the website. And make sure to subscribe to the website. Chat Section If you have any question ask me here.... Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1
- Publications | SPACELIA
Publications Space News and Space Magazines
- Research | SPACELIA
Publishing our latest research papers on space objects alongside discussions on the ethical implications of space exploration. Research Projects Space research and latest discoveries Star Formation This is your Project description. Whether your work is based on text, images, videos or a different medium, providing a brief summary will help visitors understand the context and background. Then use the media section to showcase your project. Nebula Observation This is your Project description. Whether your work is based on text, images, videos or a different medium, providing a brief summary will help visitors understand the context and background. Then use the media section to showcase your project. Solar Flare Detection This is your Project description. Whether your work is based on text, images, videos or a different medium, providing a brief summary will help visitors understand the context and background. Then use the media section to showcase your project. The Big Bang Effect The early theory of origin of origin of universe is The Big Bang Theory. which consist a nebular exploidation of two nebulas. this theory is a strongest theory of the origin of universe. when big bang cause dark mater and all galaxies are origin. all things of our universe is cause in this time. scientist strongly work on this theory. Existence of Alien civilization Our Milky Way galaxy is around 4 billion years old, but our universe is around 13 billion years old, so if we have high technology like space craft and rocket etc, so just imagine that how other galaxy's civilization is powerful and high-tech. so point is in whole universe there is many planets like earth is good for life and maybe life is exist in this planets, so if alien exist they have more power and technology, and maybe possible they planning to attack on earth. we must be alert and full-fill to fight with aliens. Antient Literature & Geography In Hinduism they called Brahma, Vishnu, Mahesh is never born or die, let's except. They say that lord brahma created universe, let's except this also. My point is if lord brahma creates everything so which mater form is lord brahma, and if lord brahma creates atom or nano atom in nothing so where is lord brahma in nothing in which form of mater. Something came from nothing so where is lord and how it's possible. We are living in matrix yes, we are living in matrix! shocking but true many scientist proves that we are in matrix why let me explain, what we see with help of our eyes is compatible to our eyes but we can not able to see alfa red rays or electro magnetic waves but in changes of camera lance and settings we clearly see a chipset in our sky which prove that this world is matrix, detail proven photos is given in portfolio section just visit it. Net mass of our universe 500000000000000000000000000000000000000000000000000000 this number is a total mass of our universe but net mass of our universe is zero!, yes because we have already learned that we cannot create or destroy mass so when mass cannot be created so where mass came from, let me explain what is in vacuum, vacuum is one since matter and anti-matter are formed by fluctuations, the opposite of what we see also exists here, so our universe has a net mass of zero. Nearest Star System Certainly, here is a list of the 100 nearest star systems to our solar system, along with brief explanations for each: Visit More KEPLER-452b Kepler-452b, often referred to as "Earth's cousin," is an exoplanet that was discovered by NASA's Kepler Space Telescope. It was announced as a significant discovery in July 2015. Here's a detailed explanation of Kepler-452b, including information about its characteristics, atmosphere, and the potential for extraterrestrial life Visit More KEPLER-186f Kepler-186f is an Earth-sized exoplanet located 500 light-years away in the constellation Cygnus. It orbits a red dwarf star, Kepler-186, within its habitable zone, where conditions might allow liquid water to exist. This discovery sparked interest in the search for potentially habitable exoplanets and raised questions about the possibility of extraterrestrial life beyond our solar system. However, limited data about its atmosphere and surface make it challenging to assess its true habitability. Visit More Proxima Centauri b Proxima Centauri b is an exoplanet that orbits the red dwarf star Proxima Centauri, which is the closest known star to our Sun. Here's a detailed explanation of Proxima Centauri b, including information about its characteristics, atmosphere, and the search for extraterrestrial life or aliens Visit More TRAPPIST-1 TRAPPIST-1 is a star system located about 39 light-years away from Earth in the constellation Aquarius. It gained significant attention and interest in the scientific community and the public due to the discovery of seven Earth-sized exoplanets orbiting the ultra-cool dwarf star TRAPPIST-1. Here's a detailed explanation of the TRAPPIST-1 system, including information about its characteristics, the potential for atmosphere, and the search for extraterrestrial life or aliens Visit More LHS 1140b LHS 1140b is an exoplanet that orbits the red dwarf star LHS 1140, which is located in the constellation Cetus, approximately 41 light-years away from Earth. Discovered in 2017, LHS 1140b has garnered significant attention in the field of exoplanet research due to its potential for habitability and its relatively close proximity to our solar system. Here's a detailed explanation of LHS 1140b, including information about its characteristics, atmosphere, and the potential for extraterrestrial life Visit More Age of our Universe COMING SOON......... Visit More Worm Hole COMING SOON......... Visit More Religious Point of View COMING SOON......... Visit More Existence of Multiverse what is multiverse? , Does it exist in real?, and if yes then how, I will also show its proof and an experiment. In this article, you will know the secret of the multiverse and all the facts related to it and will also know whether it exists or not. Visit More White Holes A white hole is a hypothetical region of spacetime where matter and light can only escape, never enter, behaving as the reverse of a black hole. While predicted by mathematical models, there's no observational evidence yet for their existence, and they remain largely theoretical constructs in astrophysics. Visit More Black Hole A black hole is an extremely dense region in space where gravity is so strong that nothing, not even light, can escape its grasp. It forms when a massive star collapses, creating a point called a singularity surrounded by an event horizon, beyond which nothing can return. Black holes come in various sizes, including stellar-mass and supermassive black holes. Visit More Worm Hole A wormhole is a theorized passage through spacetime, predicted by Einstein's general relativity, that could connect two distant regions. Imagine it as a tunnel bending the fabric of space and time, allowing travel between these points much faster than traditional means. However, the existence of wormholes and their stability remain unproven, requiring exotic matter with properties that haven't been observed yet. Visit More
- Trappist-1 | SPACELIA
TRAPPIST-1 TRAPPIST-1 is a star system located about 39 light-years away from Earth in the constellation Aquarius. It gained significant attention and interest in the scientific community and the public due to the discovery of seven Earth-sized exoplanets orbiting the ultra-cool dwarf star TRAPPIST-1. Here's a detailed explanation of the TRAPPIST-1 system, including information about its characteristics, the potential for atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of TRAPPIST-1: Star Type: TRAPPIST-1 is an ultra-cool dwarf star classified as an M8V-type star. It is much cooler and smaller than our Sun, with a surface temperature of about 2,550 degrees Celsius (4,622 degrees Fahrenheit). Number of Exoplanets: The TRAPPIST-1 system is known to host seven exoplanets. These exoplanets are designated as TRAPPIST-1b, c, d, e, f, g, and h. They were discovered through the transit method, which involves observing the periodic dimming of the star's light as the planets pass in front of it. Habitability Zone: Several of the exoplanets in the TRAPPIST-1 system are located within the habitable zone, also known as the Goldilocks zone. This is the region around a star where conditions might be suitable for liquid water to exist on the planets' surfaces, a key factor for potential habitability. 2. Atmosphere of TRAPPIST-1 Exoplanets: Information about the specific composition and characteristics of the atmospheres of the TRAPPIST-1 exoplanets is not fully known. Detecting and characterizing exoplanet atmospheres is a challenging task that requires advanced telescopes and instruments. Astronomers have conducted studies to analyze the potential atmospheres of these exoplanets. The presence of atmospheres would be an essential factor in determining their habitability and potential for hosting life. 3. The Search for Extraterrestrial Life or Aliens: The discovery of seven Earth-sized exoplanets in the TRAPPIST-1 system, especially those within the habitable zone, has made TRAPPIST-1 a significant target in the search for extraterrestrial life. The habitable zone is a region where conditions might be right for liquid water to exist, a key ingredient for life as we know it. The search for extraterrestrial life involves looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. It also involves the study of planetary conditions, including surface temperature and radiation levels, to assess the potential for life to thrive. While the discovery of the TRAPPIST-1 exoplanets is exciting, the actual presence of extraterrestrial life remains purely speculative. The search for life beyond Earth is an ongoing scientific endeavor, and it requires more advanced technology and instruments, including next-generation telescopes like the James Webb Space Telescope, to provide more insights. 4. The Possibility of Aliens: The term "aliens" typically refers to intelligent extraterrestrial beings. While the search for microbial life or even simple life forms is a primary focus in astrobiology, the search for intelligent civilizations, often referred to as the search for extraterrestrial intelligence (SETI), remains an active area of research. SETI involves listening for radio signals or other types of communication from advanced civilizations in the universe. So far, no definitive evidence of extraterrestrial intelligent life or aliens has been found. Comparison with Solar System The TRAPPIST-1 system and our solar system are two different planetary systems in the Milky Way galaxy. While both contain multiple celestial bodies, there are significant differences between them. Here's a comparison of the TRAPPIST-1 system and our solar system: Number of Stars: Solar System: Our solar system is a single-star system, with the Sun as the central star. TRAPPIST-1 System: The TRAPPIST-1 system is a multi-star system, consisting of a red dwarf star called TRAPPIST-1 and at least seven confirmed planets orbiting it. Central Star: Solar System: The Sun is a G-type main-sequence star (a yellow dwarf). TRAPPIST-1 System: TRAPPIST-1 is an M-type dwarf star, which is much cooler and less massive than the Sun. Planetary Orbits: Solar System: In the solar system, planets have relatively stable, nearly circular orbits. TRAPPIST-1 System: The TRAPPIST-1 planets have much closer orbits to their star, with some being in the habitable zone. These orbits are closer to their star compared to most planets in our solar system. Planetary Composition: Solar System: The planets in our solar system have diverse compositions. The inner planets (Mercury, Venus, Earth, and Mars) are rocky, while the outer planets (Jupiter, Saturn, Uranus, and Neptune) are gas giants or ice giants. TRAPPIST-1 System: The TRAPPIST-1 planets are believed to be rocky, similar to the inner planets in our solar system. Some may have liquid water on their surfaces. Habitability: Solar System: Earth, in our solar system, is the only known planet with conditions suitable for life as we know it. TRAPPIST-1 System: Some of the TRAPPIST-1 planets are in the habitable zone, where liquid water could exist. This makes them potential candidates for studying the possibility of life beyond Earth. Number of Planets: Solar System: Our solar system has eight recognized planets, with Pluto being classified as a dwarf planet. TRAPPIST-1 System: At least seven planets have been discovered in the TRAPPIST-1 system. Planetary Sizes: Solar System: The planets in our solar system vary in size from small rocky planets like Mercury to massive gas giants like Jupiter. TRAPPIST-1 System: The TRAPPIST-1 planets are thought to be similar in size to Earth and its neighboring planets. Exploration: Solar System: Our solar system has been extensively explored by spacecraft, including missions to all eight recognized planets, numerous moons, and even a few asteroids and comets. TRAPPIST-1 System: As of my knowledge cutoff date in September 2021, the TRAPPIST-1 system had been observed and studied from a distance through telescopes, but no direct spacecraft missions had been sent to explore it. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b KEPLER-186f Proxima Centauri b
- Nasa's Time Line | SPACELIA
Journey of the worlds biggest aerospace organisation NASA, Timeline of NASA. Time Line
- Profile | SPACELIA
我們找不到您想要的頁面 頁面並不存在。請返回首頁繼續探索。 前往首頁
- Kepler's Exoplanets
Exoplanets that are discovered by the Kepler Telescope Kepler's Exoplanets
- Existence of Multiverse | SPACELIA
Existence of Multiverse Overview what is multiverse? , Does it exist in real?, and if yes then how, I will also show its proof and an experiment. In this article, you will know the secret of the multiverse and all the facts related to it and will also know whether it exists or not. 1.1 Imaginary view of multiverse Perspective.... We already know about the multiverse that this is our universe and there must be another such universe outside this universe and we have named it multiverse, but can't it be that when the Big Bang happened, different universes were created? It must have happened, it must be strange to hear but I will explain it to you very well. You must have read in Science in class 8-9 that when milk is heated, the particles below its surface get heated and come up and the cold particles from above come down and in the same way the milk gets heated, but this one feels hotter. After this, its hot molecules come up through an air bubble, which takes time and the milk gets heated quickly, so what is the relation of this to our theory?, like the milk particles get heated more and form a bubble type structure. Similarly, when the Big Bang happened, the particles were spread among the molecules, then that energy would also have taken a bubble-like form and we live in one of those bubble type structures. 1.2 Bubble type structure in milk Where is proof?..... 1.3 Experience of deja vu. By now you must have understood all the society but still there must be a question somewhere in your mind that proving the multiverse only on the medium of milk does not seem confidential. Yes, so now I will tell you some experiments and proofs, imagine that you are looking at the Taj Mahal and suddenly this thought came to you that yes, I have already seen the Taj Mahal and that too while standing at the same place, or Sometimes it may have happened that you are meeting someone for the first time and you feel that you have met them before, 94% of the people in the whole world have felt such things, this is called déjà vu effect, it means first. Some work done The thesis behind this is that when your timeline collides with your avatar, which is in another universe of the multiverse, then you feel that your other avatar has done this thing earlier and that thing is saved in your memory. It happens and when you see that thing again, you feel that you have done it before. We can compare this thing with the multiverse, and somewhere this thing may have a connection with the multiverse.
- Aditya L-1 - Exploration of SUN | SPACELIA
Aditya L-1 - Exploration of SUN Unraveling the Cosmic Tapestry: Chandra X-ray Observatory's Saga In the grand cosmic theater, where the universe dons its most enigmatic costumes, the Chandra X-ray Observatory stands as humanity's eye into the unseen realms. Launched by NASA in 1999, Chandra has been an unrivaled pioneer, deciphering the universe's secrets encoded in X-ray frequencies. In this comprehensive exploration, we embark on a captivating journey, unveiling the multifaceted story of Chandra – its functions, motives, structure, historic milestones, and the mesmerizing discoveries that have reshaped our understanding of the cosmos. X-ray Vision: Chandra's Functions and Motive Unveiling Cosmic Hotspots Chandra's primary function is to observe high-energy X-rays emanating from celestial objects. By capturing these elusive rays, it unveils the hottest, most dynamic regions of the universe, revealing details invisible to other telescopes. Decoding Stellar Life Cycles From supernova remnants to pulsars and black holes, Chandra plays a crucial role in decoding the life cycles of stellar objects. It's a cosmic detective, providing insights into the birth, evolution, and demise of stars. Probing Galactic Nuclei Chandra's gaze extends to the hearts of galaxies, where supermassive black holes reside. By studying the radiation emitted from these active galactic nuclei, scientists gain essential clues about the cosmic processes at play. Charting the Cosmic Web Chandra contributes to mapping the large-scale structure of the universe, uncovering the vast cosmic web formed by the distribution of hot gas between galaxies. Engineering Marvel: The Structure of Chandra X-ray Observatory Mirrors of Precision Chandra's mirrors are coated with a thin layer of iridium, a choice that enhances reflectivity in the X-ray range. Nested mirrors, rather than traditional lenses, focus the incoming X-rays onto detectors with exceptional precision. Space-Resilient Design Crafted to endure the rigors of space, Chandra orbits Earth in an elliptical trajectory, minimizing interference from the planet's radiation belts. This resilient design ensures the telescope's longevity and sustained scientific contributions. Chronicles of Chandra: A Historic Journey Launch into the Unknown Chandra embarked on its cosmic odyssey aboard the Space Shuttle Columbia on July 23, 1999. Named after the astrophysicist Subrahmanyan Chandrasekhar, the telescope began its mission to unravel the mysteries of the X-ray universe. Milestones and Legacy Throughout its journey, Chandra has left an indelible mark on astrophysics. From confirming the existence of dark energy to identifying numerous neutron stars, its discoveries have rewritten the cosmic narrative. Conclusion: Chandra's Ongoing Odyssey As we reflect on the cosmic voyage of the Chandra X-ray Observatory, we recognize its indispensable role in reshaping our cosmic comprehension. The observatory continues to unravel the X-ray mysteries, painting a vivid portrait of the universe's hidden intricacies. "X-ray Pioneers" pays homage to the brilliance of Chandra – a beacon illuminating the celestial darkness, guiding us into the depths of the cosmos where new revelations await discovery. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Osiris-REx Mission Chandra X-Ray Observatory Chandrayan-3
- Photo Albums | SPACELIA
Photo Album
- Space Discoveries of 2021 | SPACELIA
2021 Space Discoveries Amateur astronomer discovers a new moon around Jupiter A previously-unknown moon has been detected around the largest planet in the solar system. Jupiter is a giant, so it gravitationally attracts many objects into its vicinity. Earth has one major moon, Mars has two: but Jupiter boasts at least 79 moons, and there may be dozens or hundreds more of them that astronomers have yet to identify. The latest discovery was made by amateur astronomer Kai Ly, who found evidence of this Jovian moon in a data set from 2003 that had been collected by researchers using the 3.6-meter Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. Ly they confirmed the moon was likely bound to Jupiter's gravity using data from another telescope called Subaru. The new moon, called EJc0061, belongs to the Carme group of Jovian moons. They orbit in the opposite direction of Jupiter's rotation at an extreme tilt relative to Jupiter's orbital plane. NASA will return to Venus this decade Mars is a popular target for space agencies, but Earth's other neighbor has been garnering more attention recently. In 2020, researchers announced that they had detected traces of phosphine in Venus' atmosphere. It is a possible biosignature gas, and the news certainly reawakened interest in the planet. In early June 2021, NASA announced it will launch two missions to Venus by 2030. One mission, called DAVINCI+ (short for Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging, Plus) will descend through the planet's atmosphere to learn about how it has changed over time. The other mission, VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) will attempt to map the planet's terrain from orbit like never before. Venus has been visited by robotic probes, but NASA has not launched a dedicated mission to the planet since 1989. The interest in Martian exploration may be one reason why Venus has been neglected in recent decades, but the second planet from the sun is also a challenging place to study. Although it may have once been a balmy world with oceans and rivers, a runaway greenhouse effect took hold of Venus around 700 million years ago and now the planet's surface is hot enough to melt lead. The sun is reawakening The sun was experiencing a quiet time in its roughly decade-long cycle, but it is now exiting that phase. The sun has had very little activity in recent years, but the star's surface is now erupting in powerful events that spew out charged particles towards Earth. In early November, for instance, a series of solar outbursts triggered a large geomagnetic storm on our planet. This eruption is known as a coronal mass ejection, or CME. It's essentially a billion-ton cloud of solar material with magnetic fields, and when this bubble pops, it blasts a stream of energetic particles out into the solar system. If this material heads in the direction of Earth, it interacts with our planet's own magnetic field and causes disturbances. These can include ethereal displays of auroras near Earth's poles, but can also include satellite disruptions and energy losses. James Webb Space Telescope flies into space A whole new era of space science began on Christmas Day 2021 with the successful launch of the world's next major telescope. NASA, the European Space Agency and the Canadian Space Agency are collaborating on the $10 billion James Webb Space Telescope (JWST), a project more than three decades in the making. Space telescopes take a long time to plan and assemble: The vision for this particular spacecraft began before its predecessor, the Hubble Space Telescope, had even launched into Earth orbit. Whereas Hubble orbits a few hundred miles from Earth's surface, JWST is heading to an observational perch located about a million miles from our planet. The telescope began its journey towards this spot, called the Earth-sun Lagrange Point 2 (L2), on Dec. 25, 2021 at 7:20 a.m. EST (1220 GMT) when an Ariane 5 rocket launched the precious payload from Europe's Spaceport in Kourou, French Guiana. The telescope will help astronomers answer questions about the evolution of the universe and provide a deeper understanding about the objects found in our very own solar system. Event Horizon Telescope takes high-resolution image of black hole jet In July 2021, the novel project behind the world's first photo of a black hole published an image of a powerful jet blasting off from one of these supermassive objects. The Event Horizon Telescope (EHT) is a global collaboration of eight observatories that work together to create one Earth-sized telescope. The end result is a resolution that is 16 times sharper and an image that is 10 times more accurate than what was possible before. Scientists used EHT's incredible abilities to observe a powerful jet being ejected by the supermassive black hole at the center of the Centaurus A galaxy, one of the brightest objects in the night sky. The galaxy's black hole is so large that it has the mass of 55 million suns. Scientists spot the closest-known black hole to Earth Just 1,500 light-years from Earth lies the closest-known black hole to Earth, now called "The Unicorn ." Tiny black holes are hard to spot, but scientists managed to find this one when they noticed strange behavior from its companion star, a red giant. Researchers observed its light shifting in intensity, which suggested to them that another object was tugging on the star. This black hole is super-lightweight at just three solar masses. Its location in the constellation Monoceros ("the unicorn") and its rarity have inspired this black hole's name. Earth's second 'moon' flies off into space An object dropped into Earth's orbit like a second moon, and this year, it made its final close approach of our planet. It is classified as a "minimoon," or temporary satellite. But it's no stray space rock — the object, known as 2020 SO, is a leftover fragment of a 1960s rocket booster from the American Surveyor moon missions. On Feb. 2, 2021, 2020 SO reached 58% of the way between Earth and the moon, roughly 140,000 miles (220,000 kilometers) from our planet. It was the minimoon's final approach, but not its closest trip to Earth. It achieved its shortest distance to our planet a few months prior, on Dec. 1, 2020. It has since drifted off into space and away from Earth's orbit, never to return. Parker Solar Probe travels through the sun's atmosphere This year, NASA's sun-kissing spacecraft swam within a structure that's only visible during total solar eclipses and was able to measure exactly where the star's "point of no return" is located. The Parker Solar Probe has been zooming through the inner solar system to make close approaches to the sun for the past three years, and it is designed to help scientists learn about what creates the solar wind, a sea of charged particles that flow out of the sun and can affect Earth in many ways. The spacecraft stepped into the sun's outer atmosphere, known as the corona , during its eight solar flyby. The April 28 maneuver supplied the data that confirmed the exact location of the Alfvén critical surface: the point where the solar wind flows away from the sun, never to return. The probe managed to get as low as 15 solar radii, or 8.1 million miles (13 million km) from the sun's surface. It was there that it passed through a huge structure called a pseudostreamer, which can be seen from Earth when the moon blocks the light from the sun's disk during a solar eclipse . In a statement about the discovery, NASA officials described that part of the trip as "flying into the eye of a storm." Perseverance begins studying rocks on Mars Last but not least, this year marked the arrival of NASA's Perseverance rover on Mars. The mission has been working hard to find traces of ancient Martian life since it reached the Red Planet on Feb. 18, 2021. Engineers have equipped Perseverance with powerful cameras to help the mission team decide what rocks are worth investigating. One of Perseverance's most charming findings has been "Harbor Seal Rock ," a curiously-shaped feature that was probably carved out by the Martian wind over many years. Perseverance has also obtained several rock samples this year, which will be collected by the space agency for analysis at some point in the future. Perseverance is taking its observations from the 28-mile-wide (45 kilometers) Jezero Crater, which was home to a river delta and a deep lake billions of years ago.
- Courses (All) | SPACELIA
MISSIONS Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More