Search Results
80 results found with an empty search
- Jain geography | SPACELIA
The universe for Jains is an elaborate system. Jain cosmology is very distinctive, although it shares some features with other Indian religious traditions. It is centred on the everlasting and non-originating nature of the universe, and thus excludes the notion of a creator-god. Jain geography All about Jain's geography and space science Introduction The universe for Jains is an elaborate system. Jain cosmology is very distinctive, although it shares some features with other Indian religious traditions. It is centred on the everlasting and non-originating nature of the universe, and thus excludes the notion of a creator-god. As written by a leading monastic figure from the 12th century, ‘the universe having the shape of a man standing with arms akimbo, with feet apart, filled with substances continuously being created, preserved and destroyed, has never been produced by anyone and is not sustained by anyone either. It exists by itself, without any support’.[1] Although Jains do not worship a creator-god, deities do exist, as mediators between the perfected souls of the Jinas and the imperfect world of human experience, and are a part of the Jain cosmology. Structure of the Jain Universe The Jains distinguish two types of space. The first is the world space (loka-ākāśa), which is a vast but limited area where all souls live in the different body-forms they take according to their rebirths in the various worlds. The second is the non-world space (aloka-ākāśa), which is endless. The Jain universe is perfectly structured and ordered. One of its governing principles is symmetry and repetition, so that ‘to know one part is to know the whole’. It can be viewed as ‘a self-replicating composite’ with, for example, a northern region the exact replica of its southern counterpart, halves being identical, etc. The Jain universe is thought of in terms of dimensions and quantities of units. Jain thinkers have produced a vast vocabulary to describe and understand units of time and space, going from the smallest to the largest, beyond what can be imagined. The smallest unit is the atom. Infinite combinations of atoms make up the smallest unit of measurement. At the other extreme, Jains have devised a refined analysis of extremely large numbers, considering the numerable, the innumerable and the infinite. Jain cosmology gives an important place to mathematical concepts and calculations, so that mathematical treatises written by the Jains may take their illustrative examples from cosmological contexts. Śvetāmbaras and Digambaras agree on the structure of the universe and its elements but differ on many names and numbers. Grasping Jain cosmology is vital to understanding the Jain religion. The soul is an innately pure substance. But, due to embodiment and activity, good or bad, it accumulates karma, which in the Jain understanding means physical matter. This alters the purity of the soul and generates cycles of rebirths within the universe until this finally ends. Rebirth can take one of the following four forms of destiny (gati): 1. as a human (manuṣya); 2. as an inhabitant of the hells (naraka); 3. as a deity (deva); or 4. as an animal or plant (tiryag). Spiritual progression requires an understanding of these cosmological theories. Contemplating the universe is also included within the system of reflection-topics (anuprekṣā). Jambudweep This topic can not be logically or physically proven. It can only be understood on the base of Aagam Vani. You may not be able to beleive it if you think it from modern view as it exists right now. This has to be taken on faith to understand and the main foundation of its understanding is Kevalgyan. Two vertical lines are Tras Nadi where Tras Jeev live. This is in the middle with 13 Raju height. Not covering 1 Raju at the top. Every structure we understand or is described is contained within Tras Nadi. Everything outside is only 1 sensory Jeev called Sthavar Jeev. Middle part is Madhya Lok. Middle Earth. 5 Meru parvat in the middle. Sudarshan Meru/Sumeru is the basis of differentiation of 3 Lok. Madhyalok height is defined by Sumeru Parvat. Below it is Adholok. Above it is Urdhvalok. Physical Dimensions: Bottom – 7 Raju Middle – 1 Raju Up Middle – 5 Raju Top – 1 Raju Depth – 7 Raju Height – 14 Raju Volume 343 Raju^3 Scale: Raju/Rajju is a measurement unit. 1 Raju = Infinite Yojan 1 Yojan = 2000 Kos 1 Kos = 2 Miles 1 Mile = 1.64 Km Strange Facts In front of Jain Geography, the principles and discoveries of our science and space become false, because in Jain Geography, the house is considered as a divine plane, whatever nature the house has, that plane will also be of that type, and in the same way in Jain Geography The sun is considered as the plane of heat and the moon as the plane of coolness and an interesting fact about it is that in Jain geography there are two suns and two moons. According to Jainism, man can never go to the Moon or any other planet! Yes, you are listening right, I know that it sounds very different, but it is not a matter that these things are only heard somewhere, this principle is also a reality in Puranas and the map you are seeing above is also Jambudweep. It is from Another special thing in this is that in the middle of Jambudweep, there is Mount Meru, at some distance of which all the things of this universe are present, and according to this, we humans can never reach this sacred plane and all the other things, there is also a solid proof of this. There is a reason which I will tell you later. Yes, I know you will definitely be shocked to hear all this, but it is true and there is also one thing that Jain geography is very different and unique from our modern space science, but I will tell you further in the rest of the information. Who created our Universe according to Jainism No, as per Jainism Universe is eternal. It's neither created nor shall it ever collapse. Now to the question, i.e. what led to the creation (read structure) of the universe ? To keep things simple, we will just concentrate on the middle world where we humans live as it will help us better understand the structure and operations of the universe on the foundations of our current knowledge on the subject. What is outside of the Universe Well, that would define how you describe the universe as. As per Jainism, the universe consists of broadly two regions viz Lokakash and Alokakash 1st region Lokakash is the region that consists of all things made of a material that exhibits the property of Fusion (Pud) and Fission (Gal) which we call matter today. Its this region of the universe that hosts our planet and all other alien habitable planets that support intelligent lifeforms, along with higher and lower planes where demigods and hellish beings reside.
- Spacelia App | SPACELIA
Install Our App Install SPACELIA app for group quiz, news and latest updates about this site changes. install it in your compatible platform. Download the app now! Get Updates Get the latest app version, news & updates. Subscribe to our newsletter. Subscribe Thanks for submitting!
- Spacelia Scopic World | SPACELIA
Spacelia Scopic World Our telescopic discoveries and unique gallery of space images and different space objects hope so you enjoy it.
- We are our GOD | SPACELIA
We are our GOD Warning : This is just a theory and a mindset, it has no relation with any religion, we do not promote any religion or caste, we are from the side of science and just look at it as a perspective, and do not connect it with religion. Overview...... We are our own God, it does not mean that we are God, so do not consider yourself a God, in this we have shown a view of how we control ourselves, if you guys have seen the movie Interstellar then you must have seen it in this. I am the character who is controlling it, i.e. manipulating it, in short we can say that we are our God. In this theory, I will also give you answers to many mysteries of the world, like the mystery of the Egyptian pyramids, the mystery of repeatedly seeing UFOs in the sky, and will also try to answer all these miracles, this theory is related to our space. Will answer all the questions. , but this is also an attitude of the mind. Our Perspective...... So let's start our journey, before that Batadu, we are not saying this against any religion, or we are not taking fever of any religion, we are just explaining the science, so please do not let it get into any religious controversy. Add So the first question you might be asking is how? How can this happen? You must have seen the movie Interstellar, in which it is shown that I am the character, he is the one who is contacting me, sending me messages, he is controlling me in short, so I am also in the same perspective. I want to understand but not on the claim of any movie but on my own strong claim. It is possible that our technology becomes so advanced that we become Type 5 or Type 7 civilization, and as you all know how advanced Type 5 civilization is and we also saw it in the movie Interstellar. So, by complementing time, we can make time a physical dimension as well, right, then with the same physical power we can also control our past and this is absolutely possible. Although it will definitely happen, it is possible that the one whom we are calling God is ourselves or God is a Type 7 Civilization, according to the future, we are controlling ourselves from the future itself to reach that future. I know it is very difficult to understand this concept easily but this concept can change the world, we cannot prove it, hence we can only show it in the form of a thesis or theory. But this theory can also become a strong side, I will make this theory a little easy and interesting so that you can understand it easily. So imagine that you are also a part of that Type 7 civilization and you can also control your own time dimension, then what will you do, obviously you will think only good for yourself and do good things for yourself, then only that. I want to make you understand that we are controlling ourselves. We have heard one more thing that if we think positive then we will be positive, and you must have heard another thing that whatever happens happens only for the good, so don't you think these things connect with my theory, you have seen people doing nothing before God. You might have asked for it and maybe many people might have got it, if I talk about myself, I have got it all. Have you heard about the Law of Attraction?, what it says is that you should be positive, keep positivity in your arms, ask for what you want from your heart, this universe will absorb that positivity and give you whatever you want, and surprisingly this concept also If you relate to this theory of mine, then can this theory become special which will give answers to all the questions related to our space and it is also related to all the concepts, what do you have to say, please tell me in the chat section. Now we come to our mysteries, what are these aliens? Who is this? So imagine, if we become type 7 civilization then we will be able to manipulate the time dimension also, then with this we will be able to go to the past and perhaps this UFO can be our space vehicle with the help of which we can travel in time. And these images of aliens are not aliens but advanced civilizations that are helping us, and after some time they may come to meet us through UFOs. Now this is the mystery of the pyramids of Giza in which we have not been able to find out yet how these pyramids were built, how they brought 500 kg of rocks at that time, and the biggest mystery of this is its direction and perfection, so can we say this? It is possible that we may have helped them in creating those pyramids, may be they needed us then and we have come to help them? If this happens, then this theory can also become the theory of everything by making some changes, Now coming to the miracle, what is it, we have never explained miracle properly in the language of science before, but I would like to explain something to you from this theory, do you remember the anomalies of gravitational and time that happened in the movie Interstellar? In the same way, we can consider miracles as an anomaly, I would not like to say this with complete confidence but I am just making my point, I am not saying that religion is wrong or anything else, I am just saying this in the language of science. I am defining miracle, this miracle can also be a message sent by our advanced civilization, for me it is absolutely possible, if we connect all these strange incidents that are happening then it will be perfect. Hey, there are some gap holes in this theory of mind, but it can answer most of the mysteries, it is possible that advanced civilization wants to contact us or it can be something to say or give a message. What do you have to say about this? we are still working on this theory and we are expanding it further, till then you read it, think and ask us questions in the chat box below. You will say that I am not able to understand anything well, no problem, I understand with an example. Everyone must be using a mobile phone, suppose you are currently using an Android phone and a new phone comes in the market, iPhone and it is many times better than your Android, then what will you do? Leave Android and buy iPhone, and they will give Android and put your SIM card in iPhone, right? If you relate our theory to this example, you will understand everything. We are Android inside which is the SIM card i.e. our soul. Then we die, someone changes the phone and puts our soul in another body. Now that Android phone is a body without a soul which we burn or bury. And all this is controlled by civilizations much more advanced than us. To understand this theory, we will have to imagine the era of Type 7 civilization and think like them. We will keep adding the remaining data to this theory. Chat Section If you have any question ask me here.... Other Articles...... Theories Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop Today Onward Theory Parallel World Travel STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1
- Hubble's Nebulae | SPACELIA
Hubble's Nebulae Hubble telescope discovered some nebulae here is an image and detail of the nebulae and other information about it. Emission Nebulae Emission nebulae are so named because they emit their own light. This type of nebula forms when the intense radiation of stars within or near the nebula energizes the gas. A star’s ultraviolet radiation floods the gas with so much energy that it strips electrons from the nebula’s hydrogen atoms, a process called ionization. As the energized electrons revert from their higher-energy state to a lower-energy state by recombining with atoms, they emit energy in the form of light, causing the nebula’s gas to glow. A famous example of an emission nebula is the Orion Nebula, a huge, star-forming nebula in the constellation Orion. The Orion Nebula is home to a star cluster defined by four massive stars known as the Trapezium. These stars are only a few hundred thousand years old, about 15-30 times the mass of the Sun, and so hot and bright that they’re responsible for illuminating the entire Orion nebula. But thousands of additional, mostly young stars are embedded in the nebula. The most massive are 50 to 100 times the mass of our Sun. The radiation and solar winds of stars within emission nebulae carve and sculpt the nebula’s gas, creating caverns and pillars but also creating pressures on the gas clouds that can give rise to more starbirth. Reflection Nebulae Reflection nebulae reflect the light from nearby stars. The stars that illuminate them aren’t powerful enough to ionize the nebula’s gas, as with emission nebulae, but their light scatters through the gas and dust causing it to glow ― like a flashlight beam shining on mist in the dark. Because of the way light scatters when it hits the fine dust of the interstellar medium, these reflection nebulae are often bluish in color. A reflection nebula called NGC 1999 lies close to the famous Orion Nebula, about 1,500 light-years from Earth. The nebula is illuminated by a bright, recently formed star called V380 Orionis, and the gas and dust of the nebula is material left over from that star’s formation. A second well-known reflection nebula is illuminated by the Pleiades star cluster. Most nebulae around star clusters consist of material that the stars formed from. But the Pleiades shines on an independent cloud of gas and dust, drifting through the cluster at about 6.8 miles/second (11 km/s). Planetary Nebulae When astronomers looked at the sky through early telescopes, they found many indistinct, cloudy forms. They called such objects “nebulae,” Latin for clouds. Some of the fuzzy objects resembled planets, and these earned the name “planetary nebulae.” Today these nebulae keep the name, but we know they have nothing to do with planets. Planetary nebulae form during the death of low-mass to medium-mass stars. When such stars die, they expel their outer layers into space. These expanding shells of gas form a huge variety of unique shapes ― rings, hourglasses, rectangles, and more ― that show the complexity of stellar death. Astronomers are still studying how these intricate shapes form at the end of a star’s life. As the star casts off its outer layers, it leaves behind its core, which becomes a white dwarf star. White dwarf stars are objects with the approximate mass of the Sun but the size of Earth, making them one of the densest forms of matter in the universe after black holes and neutron stars. The white dwarf star’s ultraviolet radiation ionizes the gas of the planetary nebula and causes it to glow, just as stars do in emission nebulae. Our Sun is expected to form a planetary nebula at the end of its life. Supernova Remnants Not all stars die gently, exhaling their outer layers into space. Some explode in a supernova, flinging their contents into space at anywhere from 9,000 to 25,000 miles (15,000 to 40,000 kilometers) per second. When a star has a lot of mass ― at least five times that of our Sun ― or is part of a binary system in which a white dwarf star can gravitationally pull mass from a companion star, it can explode with the brightness of 10 billion Suns. Supernova remnants consist of material from the exploded star and any interstellar material it sweeps up in its path. The new debris from the explosion and material ejected by the star earlier in its life collide, heating up in the shock until it glows with x-rays. Supernova remnants’ glow can also be powered by the stellar wind of a pulsar ― a rapidly spinning neutron star created from the core of the exploded star. The pulsar emits electrons that interact with the magnetic field it produces, a process called synchrotron radiation, and emits X-rays, visible light and radio waves. Absorption Nebulae Absorption nebulae or dark nebulae are clouds of gas and dust that don’t emit or reflect light, but block light coming from behind them. These nebulae tend to contain large amounts of dust, which allows them to absorb visible light from stars or nebulae beyond them. Astronomer William Herschel, discussing these seemingly empty spots in the late 1700s, called them “a hole in the sky.” Included among absorption nebulae are objects like Bok globules, small, cold clouds of gas and dense cosmic dust. Some Bok globules have been found to have warm cores, which would be caused by star formation inside, and further observation has indicated the presence of multiple stars of varying ages, suggesting a slow, ongoing star formation process. The Crab Nebula is an example of a supernova remnant. The explosion that created it in the year 1054 was so bright that for weeks it could be seen even in the daytime sky, and it was recorded by astronomers across the world. The material from the star is still rushing outward at around 3 million mph (4.8 million kph). Hubble's Nebulae Gallery
- Kepler's Exoplanets
Exoplanets that are discovered by the Kepler Telescope Kepler's Exoplanets
- Space Discoveries of 2019 | SPACELIA
2019 Space Discoveries The cosmic web revealed Every galaxy in the universe is a pit stop on a long highway of gas known as the cosmic web. Each road, or "filament," on this intergalactic interstate is made of hydrogen left over from the Big Bang ; where large quantities of hydrogen converge, clusters of galaxies appear in the dark sea of space. The web is too faint to see with the naked eye, but in October, astronomers photographed a piece of it for the first time ever. Using the faint ultraviolet glow of a distant galaxy as backlighting, the image shows blue strands of hydrogen crisscrossing through space 12 billion light-years away, connecting bright white galaxies in its path. The plasma shield that guards the realms of men There is a violent clash unfolding at the frontier of our solar system . Billions of miles from the solar system's center, crackling solar wind collides with powerful cosmic rays at a boundary called the heliopause. When NASA's twin Voyager probes passed through the region and entered interstellar space last year, astronomers saw that the heliopause is not just a symbolic boundary; it's also a physical wall of soupy plasma that deflects and dilutes the worst of the incoming radiation. This plasma "shield," as it's described in a Nov. 4 study, may deflect about 70% of cosmic rays from entering our solar system. You could call it the shield that guards the realms of men. (You won't find White Walkers on the other side, but you will find some white dwarfs.) Radio bubbles in the galaxy's gut The Fermi Bubbles are twin blobs of high-energy gas ballooning out of both poles of the Milky Way 's center, stretching into space for 25,000 light-years apiece (roughly the same as the distance between Earth and the center of the Milky Way). The bubbles are thought to be a few million years old and likely have something to do with a giant explosion from our galaxy's central black hole — but observations are scarce, as they are typically only visible to ultrapowerful gamma-ray and X-ray telescopes. This September, however, astronomers detected the bubbles in radio waves for the first time, revealing large quantities of energetic gas moving through the bubbles, possibly fueling them to grow even larger, according to the scientists' report in the journal Nature. Fermi's chimneys A whole new era of space science began on Christmas Day 2021 with the successful launch of the world's next major telescope. NASA, the European Space Agency and the Canadian Space Agency are collaborating on the $10 billion James Webb Space Telescope (JWST), a project more than three decades in the making. Space telescopes take a long time to plan and assemble: The vision for this particular spacecraft began before its predecessor, the Hubble Space Telescope, had even launched into Earth orbit. Whereas Hubble orbits a few hundred miles from Earth's surface, JWST is heading to an observational perch located about a million miles from our planet. The telescope began its journey towards this spot, called the Earth-sun Lagrange Point 2 (L2), on Dec. 25, 2021 at 7:20 a.m. EST (1220 GMT) when an Ariane 5 rocket launched the precious payload from Europe's Spaceport in Kourou, French Guiana. The telescope will help astronomers answer questions about the evolution of the universe and provide a deeper understanding about the objects found in our very own solar system. Planet in a dead star's thrall When a typical sun runs out of fuel and collapses, it may become a white dwarf — the compact, crystalline corpse of a star. If that star had any planets orbiting around it, chances are they were either obliterated in the star's final growth spurt (Earth will likely be engulfed by our sun in its final years) or sucked up and destroyed by the white dwarf's intense gravity. However, in early December, astronomers discovered an intact planet orbiting a white dwarf star for the first time ever. Spotted about 2,040 light-years from Earth, the white dwarf system seems to be emitting a strange combo of gases that could be a Neptune-like planet slowly evaporating as it circles the dead sun once every 10 days. The study adds major evidence to the theory that dead stars can host planets (at least temporarily). Solar tsunamis The Parker Solar Probe's record-setting approach to the sun made this year's biggest solar science headlines, but arguably the most epic sun study came months earlier, in February, according to scientists writing in the journal Scientific Reports. The researchers described a solar phenomenon called "terminator events " — basically, cataclysmic magnetic-field collisions at the sun's equator. More epic still, the authors wrote, these collisions may result in twin tsunamis of plasma tearing across the star's surface at 1,000 feet (300 meters) per second in both directions. These gargantuan (though still theoretical) solar tsunamis could last for weeks at a time and may occur every decade or so. The next one could be due in early 2020, the authors wrote, which would give the Parker probe something truly gnarly to behold. Black hole babies from the early universe In March, Japanese astronomers searched for baby pictures of the universe by turning their telescope to a corner of space 13 billion light-years away. There, they spied 83 previously undiscovered supermassive black holes dating to the early days of the universe. The holes — actually a bunch of quasars , or huge, luminous disks of gases and dust that surround supermassive black holes — were around as few as 800 million years after the Big Bang, making them some of the earliest objects ever detected. The composite image of all 83 quasars (above) may not be as cute as your own baby pictures, but it's arguably way cooler. Renegade star flees rare black hole In September, astronomers detected one of the fastest renegade stars ever recorded, fleeing across the Milky Way at 1.2 million mph (2 million km/h). Most stars moving at such blazing speeds are usually the survivors of a binary system that got ripped in half by a supermassive black hole or exploding supernova, but this speedy sun appeared to be different. After tracking the star's velocity and trajectory, researchers determined that it seemed to have suffered a run-in with a mid-mass black hole — that is, a black hole with hundreds to hundreds of thousands of times the mass of the sun (as opposed to a supermassive black hole , which can be millions or billions of times the sun's mass). This theoretical type of black hole has never been observed before, and scientists have never found convincing evidence that they actually exist. Now, one speedy star might shine the way to the proof that scientists have been looking for. Fast radio burst followed home Fast radio bursts (FRBs) are intensely bright, vanishingly brief pulses of radio energy that constantly zip across the universe like invisible bullets. What are they, exactly — belches of radiation from supermassive black holes? The pulses of alien spaceship engines ? Scientists don't know for sure, but a team of researchers came closer to solving the puzzle in June when they tracked an FRB across space and time to its precise origins for the first time ever. Using a radio telescope array in the Australian outback, the researchers found the burst in question (which lasted a fraction of a millisecond) originated from a Milky Way-size galaxy about 3.6 billion light-years from Earth, which was no longer producing fresh stars. These results show that FRBs can form in a variety of cosmic environments (and that aliens still can't be ruled out).
- Answer of the Arecibo Message | SPACELIA
In 1974, humanity took a bold step into the unknown. From the Arecibo Observatory in Puerto Rico, a powerful radio signal pierced the night sky. This wasn’t your typical astronomical observation; it was a deliberate message aimed at the vast emptiness of space, carrying a beacon of our existence. This message, known as the Arecibo message, became a landmark event in our search for extraterrestrial intelligence (SETI). Answer of the Arecibo Message Messages to the Stars: Humanity’s Search for Cosmic Connection For as long as humans have gazed at the stars, we’ve wondered if someone—or something—is looking back. This timeless question has fueled art, science, and philosophy for centuries, driving efforts to make contact with whatever might be out there. From real scientific milestones to intriguing mysteries and fictional narratives, humanity’s quest to communicate with the cosmos continues to inspire and captivate. Let’s explore three iconic examples of this endeavor: the Arecibo Message, the mysterious Chilbolton Message, and the imaginative response portrayed in the movie Contact. 1. The Arecibo Message: Humanity’s First Call to the Stars In 1974, scientists sent a groundbreaking message from the Arecibo Observatory in Puerto Rico—a binary-coded signal designed to introduce humanity to any extraterrestrial civilization capable of decoding it. Directed at the M13 star cluster, located 25,000 light-years away, this broadcast was humanity’s first deliberate attempt to communicate across interstellar space. The message contained: Our numeric system (1 to 10) Key elements of life like hydrogen, carbon, nitrogen, oxygen, and phosphorus The structure of DNA, showcasing its double-helix configuration A depiction of a human figure alongside Earth’s population Earth’s position in the solar system A representation of the Arecibo telescope as the source of the message Though it was largely symbolic, the Arecibo Message was a bold statement of our curiosity and technological progress, underscoring humanity's hope that we are not alone. 2. The Chilbolton Message: A Mystery in the Fields Fast-forward to August 2001, when something remarkable appeared near the Chilbolton radio telescope in Hampshire, England—a mysterious crop formation. Unlike typical crop circles, this one seemed to be a direct response to the Arecibo Message. The formation mirrored the structure of the original message but contained key differences: A modified DNA sequence, suggesting a different biological makeup. A planetary system with additional planets, hinting at an alternate origin. An image of a humanoid figure, distinct from the human depiction in the original message. Despite widespread skepticism and claims of a hoax, the Chilbolton Message intrigued scientists and the public alike. It reignited the imagination, sparking debates about extraterrestrial communication and the lengths humanity might go to uncover cosmic truths. 3. The Answer in Contact: A Visionary Narrative In the realm of fiction, the movie Contact (1997) offered a profound exploration of what an actual reply to the Arecibo Message might look like. Based on Carl Sagan's novel, the story follows Dr. Ellie Arroway as she receives a signal from an intelligent extraterrestrial source. The message in Contact contains: Prime numbers, confirming an intelligent origin. Human DNA sequences, a reflection of shared understanding. Instructions to build a machine, capable of enabling interstellar travel. The narrative transcends science, delving into emotional and philosophical themes. It challenges viewers to consider not only the implications of discovering intelligent life but also how it might transform humanity’s understanding of itself. What These Messages Mean for Humanity Whether real, mysterious, or fictional, these messages symbolize humanity’s deep yearning to connect with the unknown. The Arecibo Message demonstrates our technological advancements and hope for contact. The Chilbolton Message, regardless of its authenticity, underscores our fascination with the possibility of extraterrestrial communication. Meanwhile, Contact invites us to imagine the emotional and philosophical weight of finding we are not alone. As we continue to explore the cosmos, these stories remind us that the quest for connection defines who we are. Every signal sent, every mystery pondered, and every story told brings us closer to understanding our place in the universe. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Osiris-REx Mission Chandra X-Ray Observatory Chandrayan-3 Aditya - L1
- Hubble's Planetary Discoveries | SPACELIA
Hubble's Planetary Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Watching the weather patterns on the giant outer planets (Jupiter, Saturn, Uranus, and Neptune) has been an ongoing activity throughout Hubble’s lifetime. Jupiter's monster storm, the Great Red Spot, was once so large that three Earths would fit inside it. But new measurements by Hubble reveal that the largest storm in our solar system has downsized significantly. The Red Spot, which has been raging for at least a hundred years, is now only the width of one Earth. The storm images were taken in 1995, 2009, and 2014. The images were taken with Wide Field and Planetary Camera 2 (1995) and Wide Field Camera 3. The large Wide Field Camera 2 image of Jupiter was obtained in 2007, with its moon, Ganymede, just emerging from behind the planet. The semi-major axis of Jupiter's orbit about the Sun is 5.2 astronomical units (483 million miles or 778 million km). The planet has a diameter of roughly 88,789 miles (142,984 km) at the equator. This image of Europa is derived from a global surface map generated from combined NASA Voyager and Galileo space probe observations. The graphic shows the location of water vapor detected over Europa's south pole by Hubble in December 2012. The Hubble observations provide the best evidence to date of water plumes erupting off Europa's surface. Hubble didn't photograph plumes, so the plume and the illustration in the center are artist’s conceptions. However, Hubble observers used the Space Telescope Imaging Spectrograph to spectroscopically detect auroral emissions from oxygen and hydrogen. The aurora is powered by Jupiter's magnetic field. This is only the second moon in the solar system found ejecting water vapor from the frigid surface. Another of Jupiter’s moons, Ganymede, is also likely to have a subsurface ocean. Europa is the sixth closest Jovian moon. It is the smallest of the four Jovian satellites discovered by Galileo Galilei, but still the sixth largest moon in the Solar System. Europa was discovered by Galileo in 1610. Images taken in ultraviolet light by Hubble’s Space Telescope Imaging Spectrograph (STIS) show both Jupiter auroras in 1998, the oval-shaped objects in the inset photos. Ground-based telescopes cannot view these phenomena in ultraviolet light, as it is blocked by the Earth’s atmosphere. Auroras are curtains of light resulting from high-energy electrons racing along the planet's magnetic field into the upper atmosphere. The electrons excite atmospheric gases, causing them to glow. The electric-blue image of Jupiter’s northern aurora shows the main oval of the aurora, which is centered on the magnetic north pole, plus more diffuse emissions inside the polar cap. Though the aurora resembles the same phenomenon that crowns Earth's polar regions, the blue Hubble image shows unique emissions from the magnetic "footprints" of three of Jupiter's largest moons. (These points are reached by following Jupiter's magnetic field from each satellite down to the planet). Jupiter has at least 68 moons. Auroral footprints can be seen in this image from Io (along the left-hand limb), Ganymede (near the center), and Europa (just below and to the right of Ganymede's auroral footprint). These emissions, produced by electric currents generated by the satellites, flow along Jupiter's magnetic field, bouncing in and out of the upper atmosphere. They are unlike anything seen on Earth. This ultraviolet image of Jupiter was taken with the Hubble Space Telescope Imaging Spectrograph (STIS) on November 26, 1998. In this ultraviolet view, the aurora stands out clearly, but Jupiter's cloud structure is masked by haze. Saturn’s aurora was observed with Hubble in 2005. Images were obtained with the Advanced Camera for Surveys in the optical and STIS in the ultraviolet. The aurora appeared in Saturn’s southern polar region for several days. Hubble snapped a series of photographs of the aurora dancing in the sky. The snapshots show that Saturn's auroras differ in character from day to day -- as they do on Earth -- moving around on some days and remaining stationary on others. But compared with Earth, where auroral storms develop in about 10 minutes and may last for a few hours, Saturn's auroral displays always appear bright and may last for several days. Recently, NASA’s New Horizons mission imaged Pluto and two of its moons, Nix and Hydra, which were discovered by Hubble in 2005. Peering out to the dim, outer reaches of our solar system beyond Pluto, Hubble uncovered three Kuiper Belt objects (KBOs) that the agency's New Horizons spacecraft could potentially visit after it flies by Pluto in July 2015. The KBOs were detected through a dedicated Hubble observing program by a New Horizons search team that was awarded telescope time for this purpose. The lower set of Pluto images shows Hubble Space Telescope data from the Advanced Camera for Surveys exhibiting an icy, mottled, dark molasses-colored world undergoing seasonal surface color and brightness changes. Pluto has become significantly redder, while its illuminated northern hemisphere is getting brighter. These changes are most likely consequences of surface ice melting on the sunlit pole and then refreezing on the other pole, as the dwarf planet heads into the next phase of its 248-year-long seasonal cycle. Analysis shows the dramatic change in color took place from 2000 to 2002. Note that Hubble found four of Pluto’s five moons – Nix, Hydra, Styx and Kerberos. http://hubblesite.org/newscenter/archive/releases/2014/47/full/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2010/06/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2012/32/ and related links http://www.nasa.gov/nh_new-horizons-spots-small-moons-orbiting-pluto/#.VPnlP2TF_b4 http://pluto.jhuapl.edu/ Other outer solar system objects: Eris is 1.27 times the mass of Pluto, and formerly the largest member of the Kuiper Belt of icy objects beyond Neptune. Hubble observations in 2006 showed that Eris is slightly physically larger than Pluto. But the mass could only be calculated by observing the orbital motion of the moon Dysnomia around Eris. Multiple images of Dysnomia's movement along its orbit were taken by Hubble and Keck. http://hubblesite.org/newscenter/archive/releases/solar%20system/2007/24/image/c/format/web/ Also in 2002, Hubble measured a large object discovered in the outer solar system. It was the largest outer solar system object discovered since Pluto and was superseded by the observation of Eris. Approximately half the size of Pluto, the icy world is called "Quaoar" (pronounced kwa-whar). Quaoar is about 4 billion miles away, more than a billion miles farther than Pluto. Like Pluto, Quaoar dwells in the Kuiper belt, an icy belt of comet-like bodies extending 7 billion miles beyond Neptune's orbit. http://hubblesite.org/newscenter/archive/releases/2002/17/ The upper image, taken by Hubble, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit around its parent star, Fomalhaut. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere. The black circle at the center of the image is caused by a device called a coronograph, which blocks out the otherwise overwhelming light from the bright star and allows reflected light from the belt and planet to be photographed. The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012. Fomalhaut is 25 light years (8 parsecs) away. http://hubblesite.org/newscenter/archive/releases/2013/01/ The lower graphic demonstrates Hubble’s first detection ever of an organic molecule in the atmosphere of a Jupiter-sized planet orbiting another star. This breakthrough is an important step toward eventually identifying signs of life on a planet outside our solar system. The molecule found by Hubble is methane, which under the right circumstances can play a key role in prebiotic chemistry — the chemical reactions considered necessary to form life as we know it. The graphic shows a spectrum of methane with the configuration of the star and the planet (not to scale) in relation to Hubble. The object is 63 light years (19 parsecs) away. http://hubblesite.org/newscenter/archive/releases/2008/11/
- Site Map | SPACELIA
Find your way around! Explore our site map for quick access to all topics and navigate easily between pages. Site Map overview of site Solar System Sun Hit me for more information Mercury Hit me for more information Venus Hit me for more information Earth Hit me for more information Moon Hit me for more information Mars Hit me for more information Ceres Hit me for more information Asteroid Belt Hit me for more information Jupiter Hit me for more information Saturn Hit me for more information Comets Hit me for more information Uranus Hit me for more information Neptune Hit me for more information Kuiper Belt Hit me for more information Pluto Hit me for more information Oort Cloud Hit me for more information Research Star Formation Hit me for more information Nebula Observation Hit me for more information Solar Flare Detection Hit me for more information The Big Bang Effect Hit me for more information Existence of Alien civilization Hit me for more information Antient Literature & Geography Hit me for more information We are living in matrix Hit me for more information Net mass of our universe Hit me for more information Time Dilation Effect Hit me for more information Nearest Star System Hit me for more information KEPLER-452b Hit me for more information KEPLER-186f Hit me for more information Proxima Centauri b Hit me for more information Trappist-1 Hit me for more information LHS 1140b Hit me for more information Black Hole Hit me for more information Worm Hole Hit me for more information Age of our Universe Hit me for more information Religious Point of view Hit me for more information Existence of Multiverse Hit me for more information White Hole Hit me for more information Theories Time is not constant Hit me for more information Origin Of Earth Hit me for more information The Big Bang Theory Hit me for more information General Relativity Theory Hit me for more information Heat Death of the Universe Hit me for more information Multiness of Thoughts Hit me for more information Quantum Theory Hit me for more information Hubble's Law Hit me for more information Cosmic Inflaction Hit me for more information String Theory Hit me for more information Dark Metter Theory Hit me for more information Dark Energy Hit me for more information Multiverse Theory Hit me for more information Tagmark's Four Levels of Multiverse Hit me for more information Apple In a Box Hit me for more information Simulation Theory Hit me for more information Special Relativity Theory Hit me for more information Twin Paradox Hit me for more information Quantum Entanglement Hit me for more information The Infinite Hotel Paradox Hit me for more information The Rare Earth Hit me for more information The Great Silence Hit me for more information The Great Filter Hit me for more information The Early Bird Hit me for more information Theory of Creati Hit me for more information The Grandfather Paradox Hit me for more information We are nothing.... Hit me for more information Today Onward Theory Hit me for more information Chess Square Theory Hit me for more information We Are Our GOD Hit me for more information The Femi Paradox Hit me for more information String Theory Hit me for more information Space Facts The Great Attractor Hit me for more information Age of Water Hit me for more information Gliese 436 B Hit me for more information The oldest planet Hit me for more information GJ 1214B Hit me for more information HD 140283 Hit me for more information Deja Vu effect Hit me for more information Milky way galaxy Hit me for more information Speed of Light Hit me for more information Travel at speed of light Hit me for more information Speed of Light 2 Hit me for more information Time Dilation Hit me for more information Epsilon Eridani Star System Hit me for more information Strange Planets Hit me for more information Space Facts-1 Hit me for more information PSR J1719 1438B Hit me for more information Center of Mass Hit me for more information Center of Mass Hit me for more information What is Time? Hit me for more information Why we should not make contact with aliens right now Hit me for more information Quantum Elevator Hit me for more information Bennu Asteroid Hit me for more information Voyagers Golden Record Hit me for more information WARP Drive Hit me for more information Psyche Asteroid Hit me for more information Earendel Star Hit me for more information Articles STAR VFTS102 Hit me for more information Dark Energy Hit me for more information Multiness of Thoughts Hit me for more information Zombie Planets Hit me for more information The Dream Mission Hit me for more information Creation of Mind Loop Hit me for more information Osiris-REx Mission Hit me for more information Chandra X-Ray Observatory Hit me for more information Aditya L-1 - Exploration of SUN Hit me for more information Discoveries Hubble's Discoveries Hit me for more information Hubble's Deep Field Hit me for more information Hubble's Star Clusters Hit me for more information Hubble's Nebulae Hit me for more information Hubble's Galaxies Hit me for more information Hubble's Galaxy Discovery Hit me for more information Hubble's Nebula Discovery Hit me for more information Hubble's Planetary Discovery Hit me for more information Kepler Telescope Hit me for more information Nasa's Time Line Hit me for more information Space Discoveries of 2019 Hit me for more information Space Discoveries of 2021 Hit me for more information
- Hubble's Galaxy Discovery | SPACELIA
Hubble's Galaxy Discoveries Our Sun is just one of a vast number of stars within a galaxy called the Milky Way, which in turn is only one of the billions of galaxies in our universe. These massive cosmic neighborhoods, made up of stars, dust, and gas held together by gravity, come in a variety of sizes, from dwarf galaxies containing as few as 100 million stars to giant galaxies of more than a trillion stars. Astronomers generally classify galaxies into three major categories: spiral – like our Milky Way – elliptical, and irregular. Astronomers quickly realized that Hubble had a flaw. Its mirror was slightly the wrong shape, causing the light that bounced off the center of the mirror to focus in a different place than light bouncing off the edge. This “spherical aberration,” about 1/50th the thickness of a sheet of paper, was corrected during the first servicing mission in 1993 with installation of the Corrective Optics Space Telescope Axial Replacement (COSTAR). The result was highresolution imaging as shown in the image of galaxy M100. Since then, all of Hubble’s instruments have had corrective optics built in, eventually making COSTAR unnecessary. It was removed from the telescope in 2009. Hubble was upgraded four more times with improved instruments. The inset image is from Servicing Mission 1 (STS-61, Space Shuttle Endeavor) which took place in December 1993. Astronauts installed COSTAR and replaced Wide-Field Planetary Camera 1 (WFPC1) with Wide-Field Planetary Camera 2 (WFPC2), the first instrument to have the correction built into its optics. The image shows astronauts replacing WFPC1 with WFPC2. Detailed note: The two images of the center of galaxy Messier 100 show WFPC1 and WFPC2 data and demonstrate how well Servicing Mission 1 corrected the mirror flaw. Hubble could now achieve its design specifications. The largest Hubble Space Telescope image ever assembled, this sweeping view of a portion of the Andromeda galaxy (M31) is the sharpest large composite image ever taken of our galactic neighbor. Though the galaxy is over 2 million light-years away, Hubble is powerful enough to resolve individual stars in a 61,000-light-year-long stretch of the galaxy. The Andromeda galaxy is only 2.5 million light-years from Earth, making it a much bigger target in the sky than the myriad galaxies Hubble routinely photographs that are billions of light-years away. The Hubble survey is assembled into a mosaic image using 7,398 exposures taken over 411 individual pointings. The data were taken with the Advanced Camera for Surveys. The lower left inset points out the numerous types of objects seen in the image. The lower right inset is a composite made from a series of ground observations that shows the entire M31 galaxy and the portion imaged by Hubble. This 91-million pixel mosaic of the Whirlpool Galaxy (M51) was released to celebrate Hubble’s 15th anniversary. Beyond the sheer beauty of the image, the details along the spiral arms follow the progression of star formation from dark dust clouds through pink star-forming regions to blue newborn star clusters. Some astronomers believe that the Whirlpool's arms are so prominent because of the effects of a close encounter with NGC 5195, the small, yellowish galaxy at the outermost tip of one of the Whirlpool's arm. The distance to M51 is 23 million light years (7 megaparsecs). This image of the Sombrero Galaxy is one of the first large mosaics produced from the Advanced Camera for Surveys instrument. Combining data from six pointings, the full resolution image contains over 70 million pixels. The Sombrero is cataloged as Messier 104 (M104). The galaxy's hallmark is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This brilliant galaxy was named the Sombrero because of its resemblance to the broad rim and high-topped Mexican hat. Sombrero is 28 million light years (9 megaparsecs) away. These two spiral galaxies started to interact a few hundred million years ago, making the Antennae galaxies one of the nearest and youngest examples of a pair of colliding galaxies. Nearly half of the faint objects in the Antennae image are young clusters containing tens of thousands of stars. The orange blobs to the left and right of image center are the two cores of the original galaxies and consist mainly of old stars criss-crossed by filaments of dust, which appear brown in the image. The two galaxies are dotted with brilliant blue star-forming regions surrounded by glowing hydrogen gas, appearing in the image in pink. The image allows astronomers to better distinguish between the stars and super star clusters created in the collision of two spiral galaxies. The Antennae are 62 million light years (19 megaparsecs) away. Galaxy interactions are not always the grand collisions seen in the Antennae galaxies. These two interacting galaxies, called the Rose Galaxy or catalog name Arp 273, have produced less pronounced distortions in each others’ shape. The larger of the spiral galaxies, known as UGC 1810, has a disk that is tidally distorted into a rose-like shape by the gravitational tidal pull of the companion galaxy below it, known as UGC 1813. A swath of blue jewels across the top is the combined light from clusters of intensely bright and hot young blue stars. These massive stars glow fiercely in ultraviolet light. The smaller, nearly edge-on companion shows distinct signs of intense star formation at its nucleus, perhaps triggered by the encounter with the companion galaxy. Some called this picture a “rose” of galaxies, with the upper galaxy as the bloom, and the lower galaxy as the stem. The pair is 340 million light years (105 megaparsecs) away.
- Osiris-REx Mission | SPACELIA
Osiris - REx Mission Remember that scene in "Armageddon" where Bruce Willis blows up a giant asteroid on a collision course with Earth? Thankfully, Bennu, a real near-Earth asteroid, isn't hurtling towards us quite that aggressively. But it is still a celestial wanderer with a thrilling story, and the audacious mission of the OSIRIS-REx spacecraft to unlock its secrets. Bennu: A Time Capsule From the Solar System's Dawn Imagine a colossal rock, bigger than the Empire State Building, older than the dinosaurs, and potentially holding the key to the origins of life on Earth. That's Bennu, a carbonaceous chondrite asteroid formed in the fiery crucible of the early solar system, some 4.5 billion years ago. Unlike its metallic or rocky siblings, Bennu is a carbonaceous treasure trove, its dark, diamond-like surface coated in organic molecules and minerals untouched for eons. Studying these pristine materials is like opening a time capsule, offering scientists a glimpse into the conditions that gave birth to our solar system and the potential for life beyond Earth. OSIRIS-REx: A Touch in the Void In 2016, NASA embarked on a mission as daring as it was groundbreaking: to rendezvous with Bennu, study its surface, and collect a precious sample. The OSIRIS-REx spacecraft, a technological marvel resembling a robotic octopus, embarked on a years-long journey, navigating the gravitational dance of the solar system and finally arriving at Bennu in 2018. For two years, OSIRIS-REx orbited Bennu like a celestial dance partner, mapping its surface in exquisite detail, revealing a world of craters, boulders, and even a mysterious dark plume erupting from its surface. Then, in October 2020, came the moment of truth: the Touch and Go Sample Acquisition Mechanism (TAGSAM) extended from the spacecraft, gently kissed Bennu's surface, and collected a handful of precious regolith (loose, rocky material) – Bennu's ancient secrets scooped into a cosmic treasure chest. Mission Accomplished: Bennu's Treasures Return to Earth After successfully completing its mission, OSIRIS-REx began its long journey back to Earth, carrying its priceless cargo. On September 24, 2023, the spacecraft hurtled through the atmosphere, releasing the sample capsule over the Utah desert. This precious payload, containing millions of Bennu particles, landed safely, marking a historic moment in space exploration. Bennu's Secrets Unlocked: A New Chapter in Science Scientists around the world are now eagerly analyzing the Bennu sample, hoping to answer some of humanity's most profound questions. What were the building blocks of the solar system? How did asteroids contribute to the formation of planets? Could Bennu's organic molecules hold the key to the origins of life? The answers lie within the grains of Bennu's regolith, waiting to be deciphered. This mission is not just about understanding the past; it's about preparing for the future. Studying Bennu's composition and trajectory could help us develop strategies to deflect asteroids in case they ever pose a threat to Earth. Bennu: More Than Just a Rock, a Story of Our Universe The story of Bennu is a testament to human ingenuity and our insatiable curiosity about the universe. It's a reminder that even in the vast emptiness of space, there are treasures to be found, stories to be told, and mysteries waiting to be unlocked. With every grain of Bennu analyzed, we expand our understanding of the cosmos and our place within it. Who knows, maybe one day, Bennu won't just be a celestial bullet dodged, but a key to unlocking the secrets of life itself. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Chandra X-Ray Observatory
- Portfolio | SPACELIA
Explore the cosmos with us! Dive into our portfolio of space-themed projects, from breathtaking visuals of celestial objects to informative pieces on space exploration and regulations. Portfolio In the portfolio section, you will get the explanation of the topic with images so that you will be able to learn well and will not get bored.
- How we Evolved | SPACELIA
How we Evolved
- KEPLER-452b | SPACELIA
KEPLER-452b Kepler-452b, often referred to as "Earth's cousin," is an exoplanet that was discovered by NASA's Kepler Space Telescope. It was announced as a significant discovery in July 2015. Here's a detailed explanation of Kepler-452b, including information about its characteristics, atmosphere, and the potential for extraterrestrial life 1. Characteristics of Kepler-452b: Size and Mass: Kepler-452b is considered a super-Earth, as it is larger than Earth, with an estimated radius about 1.6 times that of Earth. However, its exact mass is still uncertain, as it depends on its composition, which is not precisely known. Orbit: Kepler-452b orbits a star known as Kepler-452, which is very similar to our Sun in terms of both size and temperature. Its orbit around Kepler-452 takes approximately 385 days, making it roughly analogous to Earth's year. Distance from Star: Kepler-452b is located within the habitable zone of its parent star. The habitable zone, also known as the "Goldilocks zone," is the region around a star where conditions may be right for liquid water to exist on the planet's surface—a key factor for the potential development of life as we know it. Age: The host star Kepler-452 is older than our Sun, estimated to be around 6 billion years old, which could have allowed more time for life to potentially develop on Kepler-452b. 2. Atmosphere of Kepler-452b: The exact composition and characteristics of Kepler-452b's atmosphere are not currently known. The detection and analysis of exoplanet atmospheres are challenging tasks and often require advanced instruments like the James Webb Space Telescope (scheduled for launch) to provide more detailed information. The presence and composition of an atmosphere are critical factors in determining the potential habitability of an exoplanet. An atmosphere can help regulate temperature, protect against harmful radiation, and play a role in supporting life processes. 3. Potential for Extraterrestrial Life: Kepler-452b's location within the habitable zone of its star makes it an intriguing candidate for the potential existence of extraterrestrial life. The habitable zone represents the region where conditions might be suitable for liquid water, a fundamental ingredient for life as we know it, to exist on the planet's surface. However, the presence of liquid water alone does not guarantee the existence of life. Many other factors, such as the planet's atmosphere, geological activity, and the availability of essential chemical ingredients, would also influence its habitability. Detecting signs of life on Kepler-452b or any exoplanet is extremely challenging and would likely require advanced telescopes capable of analyzing the planet's atmosphere for biomarkers (e.g., oxygen and methane) or other potential signs of biological activity. Kepler-452b and Earth are both planets, but they have some significant differences, as well as similarities. Here's a comparison between the two: 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms. Kepler-452b: Kepler-452b is estimated to be about 1.6 times the size (radius) of Earth, but its mass is not precisely known. It's considered a super-Earth. 2. Orbit and Parent Star: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). Kepler-452b: Kepler-452b orbits a G-type main-sequence star (G2V) known as Kepler-452, which is very similar to the Sun. Its orbital period is approximately 385 Earth days. 3. Habitability and Atmosphere: Earth: Earth has a diverse and life-sustaining atmosphere composed primarily of nitrogen (78%) and oxygen (21%), with trace amounts of other gases. It has liquid water on its surface and a stable climate, making it highly habitable. Kepler-452b: The exact composition of Kepler-452b's atmosphere is not known, and its habitability is still uncertain. It's located within the habitable zone of its star, indicating the potential for liquid water, but more information about its atmosphere is needed to assess its suitability for life. 4. Age: Earth: Earth is approximately 4.5 billion years old. Kepler-452b: The host star Kepler-452 is estimated to be about 6 billion years old, making it older than the Sun. This could have implications for the potential development of life on the planet. 5. Surface Conditions: Earth: Earth has a diverse range of surface conditions, including continents, oceans, and various climate zones. It supports a wide variety of life forms and ecosystems. Kepler-452b: The specific surface conditions of Kepler-452b, such as the presence of oceans or continents, are not known due to limited observational data. 6. Potential for Extraterrestrial Life: Earth: Earth is known to host a vast array of life, from microorganisms to complex multicellular organisms, including humans. Kepler-452b: Kepler-452b is considered a potentially habitable exoplanet due to its location within the habitable zone, but the presence of extraterrestrial life on the planet is purely speculative at this point. More research and observations are needed to assess its habitability and the potential for life. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1
- Space Facts | SPACELIA
Facts about Space Facts about space, new planets, antique thing in space, new updates The great attractor Location: The Great Attractor is located in the direction of the Centaurus and Hydra constellations, roughly 150 million light-years away from Earth. Its position behind the dust clouds of our Milky Way galaxy makes it challenging to observe directly. Gravitational Pull: The Great Attractor possesses an immense gravitational force that influences the motion of nearby galaxies. It acts as a massive attractor, causing galaxies to move towards it at high speeds. This gravitational pull shapes the large-scale structure of the universe. Uncertain Nature: The exact nature and composition of the Great Attractor remain a mystery. Scientists propose various theories, including the possibility of it being a concentration of dark matter or a supercluster of galaxies. Further research and observations are necessary to unravel the true nature of this cosmic phenomenon. Age of water A fascinating fact about the age of water on Earth is that some of the water molecules we have today are estimated to be as old as the solar system itself. This conclusion is based on the analysis of isotopes, specifically the ratios of deuterium (a heavy isotope of hydrogen) to regular hydrogen in water samples. By studying these isotopic ratios, scientists have determined that a portion of Earth's water has likely been part of the planet's hydrological cycle since its formation approximately 4.5 billion years ago. This means that the water we use and encounter every day has been cycling through the Earth's oceans, atmosphere, and land for billions of years, making it a remarkable and ancient resource. Gliese 436 B Classification: Gliese 436 b is classified as a "hot Neptune" due to its size resembling Neptune, but with extreme temperatures. Orbit and Distance: It orbits very close to its parent star, completing a revolution in just 2.64 Earth days. Gliese 436 b is located approximately 33 light-years away from Earth. Atmosphere and Composition: The planet has a scorching atmosphere due to its close proximity to the star. It is primarily composed of hydrogen and helium, but also contains exotic materials such as "hot ice" or superheated steam. Density and Structure: Gliese 436 b has a relatively low density compared to other exoplanets of similar mass and size. The planet may have a dense core surrounded by a massive envelope of hydrogen and helium. Tidal Forces: Strong tidal forces act on the planet due to its proximity to the star. These tidal forces elongate the planet, leading to additional heating of its atmosphere. The oldest planet Age: PSR B1620-26 system is estimated to be around 12.7 billion years old. Star: The system's central star is a binary system consisting of a pulsar (PSR B1620-26) and a white dwarf. Planets: PSR B1620-26 b (Methuselah): Discovered in 2003. Gas giant planet. Similar in size to Jupiter. Mass is approximately 2.5 times that of Jupiter. Orbits both the pulsar and the white dwarf. Average distance from the star: about 23 astronomical units (AU). Highly eccentric orbit. Orbital period: roughly 100 Earth years. PSR B1620-26 c (Genesis): Discovered in 2006. Gas giant planet. Orbits at a distance of approximately 83 AU from the central stars. GJ 1214B Discovery: GJ 1214b was discovered in 2009 by the MEarth Project, which aims to detect Earth-sized exoplanets orbiting nearby M-dwarf stars. Classification: GJ 1214b is classified as a super-Earth exoplanet. Size and Mass: GJ 1214b is larger than Earth but smaller than gas giants like Jupiter. Its size is approximately 2.7 times the Earth's radius. The mass of GJ 1214b is estimated to be around 6.5 times the mass of Earth. Composition: GJ 1214b is believed to have a substantial atmosphere. The planet's composition consists of a combination of rock and water. HD 140283 Age: HD 140283 is one of the oldest known stars in the universe. Its estimated age is about 14.46 billion years, making it older than the estimated age of the universe itself. Distance: HD 140283 is located approximately 190 light-years away from Earth. It is situated in the constellation Libra. Spectral Class and Subgiant Status: HD 140283 is classified as a subgiant star. It belongs to the spectral class F9, indicating its temperature and other Speciality: This planet is the oldest planet of our universe, in fact this planet is older than universe Deja Vu effect Deja vu is a psychological phenomenon characterized by a strong sense of familiarity or the feeling that one has experienced a current situation or event before, despite knowing that it is impossible. While the exact cause of deja vu is not fully understood, several theories have been proposed to explain its occurrence. Here are some of the leading theories: Prevalence: Deja vu is a common phenomenon experienced by a significant portion of the population. Studies suggest that approximately 60-80% of people report having had at least one deja vu experience in their lifetime. Milkey way galaxy The Milky Way Galaxy was born about 12.7 years ago, and is still expanding rapidly today. According to scientists, 6 to 7 new stars are born every year in our milky way galaxy and every year a light star dies and turns into a planetary nebula. Our solar system is 27,000 light years away from the center of the Milky Way galaxy. Our milky way galaxy travels through space at a speed of about 583 KM/S, and it is expanding at a speed of 1770 KM/H. At the center of our Milky Way galaxy is the SAGITTARIUS A* black hole with a mass 4.3 million times that of our Sun. Speed of Light The speed of light in a vacuum is approximately 299,792,458 meters per second (or about 186,282 miles per second). This speed is denoted by the symbol "c" in physics equations. Light travels at a constant speed in a vacuum, regardless of the source or the observer's motion. This is one of the fundamental principles of physics. The speed of light is incredibly fast. For example, light from the Sun takes about 8 minutes and 20 seconds to reach Earth, even though the distance is about 93 million miles (150 million kilometers). The speed of light is the fastest known speed in the universe. According to our current understanding of physics, no object with mass can reach or exceed the speed of light. Travel at speed of light If we travel at the speed of light, what will the universe look like, then understand that when we drive in the rain, the rain water hits the windshield of the car, as the speed of the car increases, the water hits more diagonally and today The concept applies to spaceships and interstellar space in the universe, where the spaceship traveling at the speed of the universe appears in 2D form in a frame against the light of the surrounding stars. MIT University has done one such fun experiment in which it has shown what it feels like to go back and forth at the speed of light. (Download link is below) Download A Slower Speed of Light game: https://gamelab.mit.edu/games/a-slower-speed-of-light/ Speed of Light 2 The fastest moving thing in our universe is light, which moves at a speed of 300,000 kilometers per second. You will be surprised to know that light takes 1.3 seconds to reach the moon from earth and it takes 182 seconds to reach Mars and it takes 32 minutes to reach Jupiter and it takes 500 years to reach our Milky Way Galaxy. Light takes 2500000 years to go and reach the nearest Galaxy Andromeda and you will be surprised to hear that despite the speed of light, it can never cross the universe because our universe is spreading faster than light. Time Dilation What is time dilation? Let us understand in a very simplified way, you must have seen the Interstellar movie, in which time is extremely slow on the planet named Millers, where 1 hour spent is equal to 7 years spent on Earth. This is because the planet was very close to the black hole, according to Einstein's theory of relativity, black holes have more time warp, so that time slows down. So understand it in this way that it normally takes us time to go from point A to B, but if we pass near a black hole, then the curvature increases, so it takes more time for us to go from A to B. Epsilon Eridani Star System 7th Aug 2000 Scientists have discovered a new star system named Epsilon Eridani in the Eridanus constellation about 10.5 light years away from Earth. This star system is exactly like our solar system. In this star system we have discovered Epsilon Eridani-b and a low mass planet Epsilon Eridani-c like Jupiter. Apart from this, the asteroid belt is also present in this star system just like our solar system. About 800 million years old, this star system is similar to the time when life began on our Earth. Scientists also consider this star system as the home of aliens. Strange Planets The Pink Planet : GJ504B is a planet that looks completely pink in color and the reason for the pink appearance of this house is its intense heat which makes it look pink, and this planet is 4 times bigger than Jupiter. Super Saturn : J1407B is also called Super Saturn because this planet has the largest planetary ring system ever found and this ring system is 640 times bigger than Saturn. The golden planet : 16 psyche is an asteroid, but it is also called a minor planet. There is a lot of gold in this asteroid. Let us tell you that the price of this minor planet is about 700 quintillion dollars. Space Facts-1 Right now we know only 5% of the universe out of 100 hubs and this is what we call the observable universe and according to scientists there are about 2 trillion galaxies in our observable universe. 1 billion 400 million years ago, a day on our earth used to be 18 hours 41 minutes. There are thousands of millions of black holes present in our Milky Way Galaxy, which keep wandering in space like this. HD140283 is considered to be the first star of this universe and the age of this star is 14.3 billion years which is more than the age of our universe. The black hole that is closest to our earth is named HR6819 and this black hole is 1000 light years away from us. PSR J1719 1438B In the year 2009, MATHEW BAILES, who is an astrophysicist, saw a house from his telescope which was 3000 times bigger than the sun, yet it was revolving around its sun, then after research, it was found that in a supernova explosion, that star was transformed into a nevtron star, whose mass is much more than its house, so it is holding its star despite being small, and that planet has also become a super giant, but due to the heat of its star. Since then the carbon inside it has now become diamond and that planet is a complete diamond planet. Center of Mass in Solar System We all have been reading since childhood that all the planets in our solar system revolve around the Sun, so according to that, the middle point for all the planets should be the middle point of the Sun, but it is not so in reality. Gravitational force pulls the planet towards itself, similarly the planets also pull the Sun, but here the Sun is an ancient and very big star, so its force is more than all the other planets, hence all the planets are seen revolving around it, but all the planets And the center of mass between the Sun is different, like Jupiter is the largest planet in our solar system, so as soon as its gravitational force and the force of the Sun meet, both of them revolve around their center of mass which is away from the center of the Sun. Comes a little further. Time Traveler Party The great scientist Stephen Hawking was already experimenting on time travel. In 2009, Stephen Hawking hosted a reception for time travelers at the University of Cambridge. He sent out invitations but did not publicize the event until afterward. The idea was to see if any time travelers would attend, as they would be aware of the event's details through time-traveling knowledge. But no one attended that party which proved that humans cannot time travel. And we also know that if we have to go back in time then it is never possible in the universe. What is Time? Time!, what is time? You will say that a clock or a calendar will be something like this, no, time is not a thing, all these are things to measure time. Time is a dimension, I understand in simple language, time has been moving ever since our universe was created, so is time moving us? No, things keep changing with time, meaning motion also keeps on changing with time, see like ever since the universe was created, it is expanding and all this is happening with time. Before the Big Bang, there was no motion in the singularity, so there was no time then, it can be said as if only time can be the cause of change. Times are changing. Why we should not make contact with aliens right now Great scientist Stephen Hawking said that we should not make contact with aliens right now. Why did he give such advice? Because we humans are still like small children in the world of technology, you will say that science has progressed so much, so many discoveries have been made, we have even gone to space, once or twice in space. We do not become rich by leaving, we have not even searched for living on another planet or have gone to live on any other planet. This progress seems big to us but it is nothing. If we contact any alien civilization, they will reach our Earth and may even harm us, that is why even today we do not respond to any signal. Quantum Elevator What is a quantum elevator? Suppose you are in a building and each floor of this building is a different dimension, you live on the 4th floor, that is, in the 4th dimension, and you have to go from the 4th floor to the 10th floor and there is an elevator here which will take you there. But when you are going from 4th floor to 10th floor then you will not be able to see the floors coming in between and you will not even know what is on this floor. This is how the quantum elevator works. And this can be very different in different dimensions, it takes us in a fixed dimension. Bennu Asteroid Composition: Bennu is a carbonaceous asteroid, rich in carbon-based compounds. This composition makes it valuable for scientists, as it could provide insights into the origin of life and the early solar system. Sample Collection: NASA's OSIRIS-REx mission successfully collected a sample from Bennu's surface in October 2020. This mission aims to return the collected samples to Earth, allowing scientists to study the asteroid's material in detail. Impact Risk: Bennu is classified as a potentially hazardous asteroid due to its orbit's proximity to Earth's orbit. Scientists continue to monitor its trajectory to assess any potential impact risks in the future. Images Voyager's Golden Record The Voyager Golden Record, a time capsule of humanity's cultural and scientific achievements, was launched aboard the Voyager 1 and Voyager 2 spacecraft by NASA in 1977. This phonograph record contains a diverse array of sounds and images representing Earth and its inhabitants, including greetings in 55 languages, music from various cultures, and images depicting life on our planet. The record was designed to serve as a message to any extraterrestrial civilizations that might encounter the Voyager spacecraft. A testament to human curiosity and creativity, the Voyager Golden Record remains a symbolic representation of our species' desire to reach out and connect with the unknown, even across the vastness of space. Gallery WARP Drive Warp drive is a theoretical propulsion system that features prominently in science fiction, notably in franchises like "Star Trek." The concept involves manipulating space-time to enable faster-than-light travel, allowing spacecraft to travel vast interstellar distances in a relatively short time. In essence, warp drive contracts space in front of the spacecraft while expanding it behind, creating a warp bubble that moves the vessel. While widely popularized, especially by theoretical physicist Miguel Alcubierre's theoretical framework in 1994, practical implementation remains a distant dream due to the enormous energy requirements and unresolved challenges in bending space-time as proposed. Scientists continue to explore the theoretical underpinnings of warp drive, but as of now, it remains firmly in the realm of speculative science fiction. Psyche Asteroid Psyche is a massive asteroid located in the asteroid belt between Mars and Jupiter. It's of particular interest to scientists because it's composed mostly of metallic iron and nickel, resembling Earth's core. This unique composition has led researchers to hypothesize that Psyche might be the exposed core of an early planetesimal, offering a rare opportunity to study the interior of a planet-like body. NASA's Psyche spacecraft, slated for launch in 2022, aims to explore this intriguing asteroid, providing valuable insights into the processes that shaped the early solar system and potentially uncovering secrets about planetary core formation. Earendel Star The James Webb Space Telescope has discovered the most distant star in space, which is believed to be the most distant star ever explored, and it is also believed that this star was formed only in the first 100 million years after the Big Bang. had gone Arandale was discovered by the Hubble Space Telescope in 2002 and along with its expansion, it has moved 2800 kilometers away from us. Recently, NASA has once again discovered this star with the help of James Webb Telescope and it has been revealed that it is 2 times bigger than our sun, its brightness is 1 million times more than our sun. NGC 6166 Black Hole Psyche is a massive asteroid located in the asteroid belt between Mars and Jupiter. It's of particular interest to scientists because it's composed mostly of metallic iron and nickel, resembling Earth's core. This unique composition has led researchers to hypothesize that Psyche might be the exposed core of an early planetesimal, offering a rare opportunity to study the interior of a planet-like body. NASA's Psyche spacecraft, slated for launch in 2022, aims to explore this intriguing asteroid, providing valuable insights into the processes that shaped the early solar system and potentially uncovering secrets about planetary core formation.
- About Team | SPACELIA
Meet The Team Founder & CEO Don Francis This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. Tech Lead Ashley Jones This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. Office Manager Tess Brown This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. Product Manager Lisa Rose This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. HR Lead Kevin Nye This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. Customer Support Lead Alex Young This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. QA Specialist Andrew Cole This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. Content Strategist Debbie Green This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. Product Manager Alissa Rose This is your Team Member description. Use this space to write a brief description of this person’s role and responsibilities, or add a short bio. Apply Today This is a Paragraph. Click on "Edit Text" or double click on the text box to start editing the content. info@mysite.com 123-456-7890
- Inflationary Cosmology | SPACELIA
Inflationary Cosmology Theory Concept...... Inflationary cosmology is a theoretical framework in physical cosmology that proposes a rapid exponential expansion of space in the early universe. It was first proposed by physicist Alan Guth in 1980 to address several puzzles in the standard Big Bang cosmology, such as the horizon problem, the flatness problem, and the origin of structure in the universe. The key idea behind inflation is that the universe underwent a brief period of extremely rapid expansion, driven by a hypothetical scalar field called the inflaton. During this inflationary epoch, the universe expanded exponentially, stretching quantum fluctuations to macroscopic scales and smoothing out the curvature and density of space. This expansion also effectively "ironed out" any irregularities in the early universe, explaining the uniformity of the cosmic microwave background radiation observed today. Inflationary cosmology has been supported by a variety of observational data, including measurements of the cosmic microwave background radiation by satellites like the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck satellite. These measurements have provided strong evidence for the predictions of inflation, such as the nearly scale-invariant spectrum of primordial density fluctuations. Despite its success in addressing many cosmological puzzles, inflationary cosmology is still a subject of active research and debate. There are various models of inflation, each with its own predictions and implications for the universe's early history. Additionally, there are ongoing efforts to test inflationary predictions through observations of the cosmic microwave background, gravitational waves, and large-scale structure in the universe. Some challenges and open questions remain within the framework of inflationary cosmology, including the initial conditions problem (i.e., explaining how inflation started and why the inflaton field had the necessary properties), the reheating mechanism (i.e., how the energy stored in the inflaton field was converted into ordinary matter and radiation), and the so-called "multiverse" implications (i.e., the idea that inflation can lead to the creation of multiple universes with different properties). Overall, inflationary cosmology has had a profound impact on our understanding of the early universe and continues to shape theoretical research in cosmology and particle physics. Chat Section If you have any question ask me here.... Other Articles...... Theories Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop Today Onward Theory Parallel World Travel We are our GOD STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1
- Existence of Multiverse | SPACELIA
Existence of Multiverse Overview what is multiverse? , Does it exist in real?, and if yes then how, I will also show its proof and an experiment. In this article, you will know the secret of the multiverse and all the facts related to it and will also know whether it exists or not. 1.1 Imaginary view of multiverse Perspective.... We already know about the multiverse that this is our universe and there must be another such universe outside this universe and we have named it multiverse, but can't it be that when the Big Bang happened, different universes were created? It must have happened, it must be strange to hear but I will explain it to you very well. You must have read in Science in class 8-9 that when milk is heated, the particles below its surface get heated and come up and the cold particles from above come down and in the same way the milk gets heated, but this one feels hotter. After this, its hot molecules come up through an air bubble, which takes time and the milk gets heated quickly, so what is the relation of this to our theory?, like the milk particles get heated more and form a bubble type structure. Similarly, when the Big Bang happened, the particles were spread among the molecules, then that energy would also have taken a bubble-like form and we live in one of those bubble type structures. 1.2 Bubble type structure in milk Where is proof?..... 1.3 Experience of deja vu. By now you must have understood all the society but still there must be a question somewhere in your mind that proving the multiverse only on the medium of milk does not seem confidential. Yes, so now I will tell you some experiments and proofs, imagine that you are looking at the Taj Mahal and suddenly this thought came to you that yes, I have already seen the Taj Mahal and that too while standing at the same place, or Sometimes it may have happened that you are meeting someone for the first time and you feel that you have met them before, 94% of the people in the whole world have felt such things, this is called déjà vu effect, it means first. Some work done The thesis behind this is that when your timeline collides with your avatar, which is in another universe of the multiverse, then you feel that your other avatar has done this thing earlier and that thing is saved in your memory. It happens and when you see that thing again, you feel that you have done it before. We can compare this thing with the multiverse, and somewhere this thing may have a connection with the multiverse.
- Nearest Star System | SPACELIA
Nearest Star Systems Certainly, here is a list of the 100 nearest star systems to our solar system, along with brief explanations for each: Alpha Centauri A : The primary star in the Alpha Centauri system, part of the closest star system to our Sun. Alpha Centauri B : The second star in the Alpha Centauri system, which includes a third star, Proxima Centauri. Proxima Centauri : The closest known star to our solar system, located in the Alpha Centauri system. Barnard's Star : The fourth-closest known individual star to our Sun, located in the Ophiuchus constellation. Luhman 16 : A binary brown dwarf system, about 6.59 light-years away from us. Wolf 359 : A red dwarf star, one of the nearest to Earth, approximately 7.8 light-years away. Lalande 21185 : A red dwarf star situated around 8.29 light-years from our Sun. Sirius : The brightest star in Earth's night sky, located about 8.6 light-years away. Ross 154 : A red dwarf star, roughly 9.69 light-years from our Sun. Ross 248 : Another red dwarf star, approximately 10.32 light-years away. Epsilon Eridani : A young star known to have at least one exoplanet, about 10.49 light-years away. 61 Cygni A : The primary star in the 61 Cygni binary system, approximately 11.41 light-years away. 61 Cygni B : The companion star in the 61 Cygni binary system. Struve 2398 A : A red dwarf star in a binary system, about 11.49 light-years away. Struve 2398 B : The companion star in the Struve 2398 binary system. Groombridge 34 A : A binary star system, around 11.62 light-years from our Sun. Groombridge 34 B : The companion star in the Groombridge 34 binary system. Procyon : Also known as Alpha Canis Minoris, it's about 11.46 light-years away and is one of the brightest stars in the night sky. Tau Ceti : Located about 11.89 light-years away, this star is often studied in the search for habitable planets. Epsilon Indi : About 11.83 light-years away, it's one of the closest solitary brown dwarfs to our Sun. Ross 128 : Approximately 11.13 light-years away, this red dwarf star is of interest for exoplanet searches. EZ Aquarii A : Part of a binary star system, approximately 11.32 light-years away . EZ Aquarii B : The companion star in the EZ Aquarii binary system. Luyten's Star : Located about 12.36 light-years away, it's a red dwarf star often used in astronomical studies. Kruger 60 A : A red dwarf star, approximately 13.1 light-years away. Kruger 60 B : The companion star in the Kruger 60 binary system. Gliese 1061 : A red dwarf star situated around 13.06 light-years away. Gliese 1 : Located about 15.76 light-years away, it's part of the Ursa Major constellation. Lacaille 8760 : Also known as AX Microscopii, it's about 12.88 light-years away. Wolf 1061 : A red dwarf star, approximately 14.05 light-years from our Sun. DX Cancri : Located about 14.82 light-years away, it's part of the Cancer constellation. Sirius B : The companion white dwarf star to Sirius A. 40 Eridani A : Also known as Keid, it's about 16.47 light-years away. 40 Eridani B : Part of the 40 Eridani binary system. 40 Eridani C : Also known as Proxima D, it's part of the 40 Eridani system. Proxima Eridani : Located around 16.44 light-years away. GJ 1066 : A red dwarf star situated around 16.87 light-years from our Sun. GJ 1214 : Known for its super-Earth exoplanet, located about 42 light-years away. GJ 1245 A : Part of a binary star system, about 17.16 light-years away. GJ 1245 B : The companion star in the GJ 1245 binary system. GJ 2005 : A red dwarf star approximately 17.52 light-years away. Kapteyn's Star : Located around 12.76 light-years away, it's one of the nearest stars to the solar system. AX Microscopii A : Part of the Lacaille 8760 binary system. AX Microscopii B : The companion star in the Lacaille 8760 binary system. Delta Eridani : Also known as DY Eridani, it's about 26.26 light-years away. GJ 402 : Located approximately 19.11 light-years away. Ross 614 : Also known as UV Ceti, it's a red dwarf star around 21.09 light-years away. Ross 780 : A red dwarf star located about 20.84 light-years away. Ross 619 : Also known as V577 Monocerotis, it's about 20.94 light-years away. Gliese 412 : A red dwarf star situated around 21.01 light-years away. AC+79°3888 : Located about 21.09 light-years away. Gliese 687 : A red dwarf star, about 21.03 light-years from our Sun. Lalande 25372 : Located approximately 21.16 light-years away. Ross 780 : Part of the Ross 780 binary system. Ross 619 : Also known as V577 Monocerotis, part of the Ross 619 binary system. Gliese 412 : Part of the Gliese 412 binary system. AC+79°3888 : Part of the AC+79°3888 binary system. Gliese 687 : Part of the Gliese 687 binary system. Lalande 25372 : Part of the Lalande 25372 binary system. Gliese 54 : A red dwarf star, approximately 21.53 light-years away. Gliese 22 : Located about 22.35 light-years away. Gliese 338 : Part of the Gliese 338 binary system, around 22.44 light-years away. Gliese 54 : Part of the Gliese 54 binary system. Gliese 22 : Part of the Gliese 22 binary system. Gliese 338 : Part of the Gliese 338 binary system. Gliese 830 : Located about 22.83 light-years away. Gliese 860 : Also known as Ross 842, it's approximately 22.36 light-years away. Gliese 880 : Located about 22.92 light-years away. Gliese 908 : Also known as V840 Cygni, situated around 22.29 light-years away. Gliese 752 : Also known as BD+02°3375, it's located approximately 22.57 light-years away. Gliese 117 : Also known as BD+43°4305, it's about 23.31 light-years away. Gliese 35 : Also known as BD-05°1844, it's around 23.51 light-years away. Gliese 559 : Also known as BD+47°3379, located approximately 23.61 light-years away. Gliese 369 : Also known as BD+75°325, it's about 23.69 light-years away. Gliese 372 : Also known as BD+35°3291, located approximately 23.70 light-years away. Gliese 109 : Also known as BD+63°1985, it's about 23.84 light-years away. Gliese 349 : Also known as BD+58°419, located approximately 23.88 light-years away. Gliese 12 : Also known as CD-44°163, situated around 24.33 light-years away. Gliese 22 : Also known as BD+16°1608, it's approximately 24.55 light-years away. Gliese 700 : Also known as CD-53°163, located about 24.70 light-years away. Gliese 735 : Also known as BD+36°1987, situated around 24.71 light-years away. Gliese 35 : Also known as BD+05°1780, it's approximately 24.74 light-years away. Gliese 799 : Also known as BD+28°3133, located about 24.84 light-years away. Gliese 350 : Also known as BD+27°2591, situated around 24.91 light-years away. Gliese 389 : Also known as BD+22°1950, it's approximately 25.00 light-years away. Gliese 424 : Also known as CD-38°161, located about 25.09 light-years away. Gliese 427 : Also known as BD+36°2107, situated around 25.16 light-years away. Gliese 12 : Also known as CD-44°161, part of the Gliese 12 binary system. Gliese 22: Also known as BD+16°1608, part of the Gliese 22 binary system. Gliese 700 : Also known as CD-53°163, part of the Gliese 700 binary system. Gliese 735 : Also known as BD+36°1987, part of the Gliese 735 binary system. Gliese 35 : Also known as BD+05°1780, part of the Gliese 35 binary system. Gliese 799 : Also known as BD+28°3133, part of the Gliese 799 binary system. Gliese 350 : Also known as BD+27°2591, part of the Gliese 350 binary system. Gliese 389 : Also known as BD+22°1950, part of the Gliese 389 binary system. Gliese 424 : Also known as CD-38°161, part of the Gliese 424 binary system. Gliese 427 : Also known as BD+36°2107, part of the Gliese 427 binary system. Gliese 86 : Also known as BD+48°2045, it's approximately 25.30 light-years away. Gliese 545 : Also known as BD+04°2466, located about 25.38 light-years away. Other Articles..... STAR VFTS102 KEPLER-452b KEPLER-186f Proxima Centauri b TRAPPIST-1
- Planetary System | SPACELIA
Map of the different different planetary systems with introduction of star and planets. Planetary System Interesting facts and information about object of our solar system. Heliocentric System Welcome visitors to your site with a short, engaging introduction. Double click to edit and add your own text. View Map Trappist-1 System Welcome visitors to your site with a short, engaging introduction. Double click to edit and add your own text. View Map
- Aditya L-1 - Exploration of SUN | SPACELIA
Aditya L-1 - Exploration of SUN Unraveling the Cosmic Tapestry: Chandra X-ray Observatory's Saga In the grand cosmic theater, where the universe dons its most enigmatic costumes, the Chandra X-ray Observatory stands as humanity's eye into the unseen realms. Launched by NASA in 1999, Chandra has been an unrivaled pioneer, deciphering the universe's secrets encoded in X-ray frequencies. In this comprehensive exploration, we embark on a captivating journey, unveiling the multifaceted story of Chandra – its functions, motives, structure, historic milestones, and the mesmerizing discoveries that have reshaped our understanding of the cosmos. X-ray Vision: Chandra's Functions and Motive Unveiling Cosmic Hotspots Chandra's primary function is to observe high-energy X-rays emanating from celestial objects. By capturing these elusive rays, it unveils the hottest, most dynamic regions of the universe, revealing details invisible to other telescopes. Decoding Stellar Life Cycles From supernova remnants to pulsars and black holes, Chandra plays a crucial role in decoding the life cycles of stellar objects. It's a cosmic detective, providing insights into the birth, evolution, and demise of stars. Probing Galactic Nuclei Chandra's gaze extends to the hearts of galaxies, where supermassive black holes reside. By studying the radiation emitted from these active galactic nuclei, scientists gain essential clues about the cosmic processes at play. Charting the Cosmic Web Chandra contributes to mapping the large-scale structure of the universe, uncovering the vast cosmic web formed by the distribution of hot gas between galaxies. Engineering Marvel: The Structure of Chandra X-ray Observatory Mirrors of Precision Chandra's mirrors are coated with a thin layer of iridium, a choice that enhances reflectivity in the X-ray range. Nested mirrors, rather than traditional lenses, focus the incoming X-rays onto detectors with exceptional precision. Space-Resilient Design Crafted to endure the rigors of space, Chandra orbits Earth in an elliptical trajectory, minimizing interference from the planet's radiation belts. This resilient design ensures the telescope's longevity and sustained scientific contributions. Chronicles of Chandra: A Historic Journey Launch into the Unknown Chandra embarked on its cosmic odyssey aboard the Space Shuttle Columbia on July 23, 1999. Named after the astrophysicist Subrahmanyan Chandrasekhar, the telescope began its mission to unravel the mysteries of the X-ray universe. Milestones and Legacy Throughout its journey, Chandra has left an indelible mark on astrophysics. From confirming the existence of dark energy to identifying numerous neutron stars, its discoveries have rewritten the cosmic narrative. Conclusion: Chandra's Ongoing Odyssey As we reflect on the cosmic voyage of the Chandra X-ray Observatory, we recognize its indispensable role in reshaping our cosmic comprehension. The observatory continues to unravel the X-ray mysteries, painting a vivid portrait of the universe's hidden intricacies. "X-ray Pioneers" pays homage to the brilliance of Chandra – a beacon illuminating the celestial darkness, guiding us into the depths of the cosmos where new revelations await discovery. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Osiris-REx Mission Chandra X-Ray Observatory Chandrayan-3
- STAR VFTS102 | SPACELIA
O-TYPE STAR VFTS102 We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s−1 and probably as large as 600 km s−1; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s−1 from the mean for 30 Doradus, suggesting that it is a runaway. By : P. Dufton et al 1. Introduction In recent years the importance of binarity in the evolution of massive stars has been increasingly recognised. This arises from most OB-type stars residing in multiple systems (Mason et al. 2009) and the significant changes to stellar properties that binarity can cause (see, for example, Podsiadlowski et al. 1992; Langer et al. 2008; Eldridge et al. 2011). Here we present a spectroscopic analysis of a rapidly rotating (veq sin i ∼ 600 km s−1) O-type star in the 30 Doradus region of the Large Magellanic Cloud (LMC). Designated VFTS102 (Evans et al. 2011, hereafter Paper I)1, the star is rotating more rapidly than any observed in recent large surveys (M artayan et al. 2006; Hunter et al. 2009) and may also be a runaway. It lies less than one arcminute from the X-ray pulsar, PSR J0537-6910, which is moving away from it. We suggest that VFTS102 might originally have been part of a binary system with the progenitor of the pulsar. 2. Observations Spectroscopy of VFTS102 was obtained as part of the VLT-FLAMES Tarantula Survey, covering the 3980-5050˚A region at a spectral resolving power of 7000 to 8500. Spectroscopy of the Hα region was also available, although this was not used in the quantitative analysis. Details of the observations and initial data reduction are available in Paper I. The spectra were normalised to selected continuum windows using a sigma-clipping rejection algorithm to exclude cosmic rays. No velocity shifts were observed between different epochs, although simulations (see, Sana et al. 2009) indicate that 30% of short period (less 1Aliases include: ST92 1-32; 2MASS J05373924-6909510 –3– than 10 days) and effectively all longer term binaries would not have been detected. We have therefore assumed VFTS102 to be single and the sigma-clipped merged spectrum displays a signal-to-noise ratio of approximately 130 and 60 for the 4000-4500 and 4500-5000˚A regions respectively. An O9: Vnnne spectral classification was obtained by smoothing and rebinning the spectrum to an effective resolving power of 4000 and comparing with standards compiled for the Tarantula Survey (Sana et al. in preparation). The principle uncertainties arise from the extremely large rotational broadening and significant nebular contamination of the He I lines, with the two suffixes indicating extreme line broadening (‘nnn’) and an emission-line s tar (‘e’). 3. Analysis 3.1. Projected rotational velocity The large rotational broadening of the spectral features makes reliable measurements of the projected rotational velocity, veq sin i , difficult. We have used a Fourier Transform (FT) approach as discussed by Sim´on-D´ıaz & Herrero (2007), supplemented by fitting rotational broadened profiles (PF) to the observed spectral features. The Balmer lines have significant nebular emission and hence the weaker helium spectra were utilized, as illustrated in Fig. 1. The He I line at 4471˚A, although well observed, also showed significant nebular emission and was not analysed. By contrast the line at 4026˚A showed no evidence of emission and yielded a plausible minimum in the Fourier Transform for a veq sin i of 560 km s−1. The PF methodology leads to a slightly higher estimate (580 km s−1). The He I lines at 4143 and 4387˚A were observed although they are relatively weak. They and the line at 4026˚A were converted into velocity space, merged and analysed. The two methodologies yielded effectively identical estimates of 640 km s−1; a similar procedure was undertaken for the He II lines at 4200 and 4541˚A yielding 540 km s−1 (FT) and 510 km s−1 (PF). The He II line at 4686˚A was found to be sensitive to the normalisation with a veq sin i of ∼560 km s−1 being estimated. The individual results should be treated with caution but overall they imply that this star is rotating near to its critical velocity, with the mean value for the FT estimates being 580 km s−1. As discussed by Townsend et al. (2004), projected rotational velocities may be underestimated at these large velocities. For a B0 star rotating at 95% of the critical velocity, this underestimation will be approximately 10%. Hence our best estimate for the projected rotational velocity is ∼600 km s−1. A lower limit of 500 km s−1 has been adopted, whilst the upper value will be constrained by the critical velocity of approximately 700 km s−1 from the models of Brott et al. (2011). This estimate is significantly higher than those (! 370 km s−1) found by Martayan et al. (2006) and Hunter et al. (2009) in their LMC B-type stellar samples. It is also larger than any of the preliminary estimates (!450 km s−1) for ∼ 270 B-type stars in the Tarantula survey, although other rapidly rotating O-type stars have been identified. As such it would appear to have the highest projected rotational velocity estimate of any massive star yet analysed. 3.2. Radial velocity Radial velocities were measured by cross-correlating spectral features against a theoretical template spectrum taken from a grid calculated using the code TLUSTY Hubeny (1988) – see Dufton et al. (20 05) for details. Five spectral regions were considered, viz. Hδ and Hγ (with the cores excluded); He I at 4026˚A; 4630-4700˚A with strong multiplets due to C III and O II and an He II line; 4000-4500˚A (with nebular emission being excluded). The measurements are in excellent agreement with a mean value of 228±12 km s−1; if the error distribution is normally distributed the uncertainty in this mean value would be 6 km s−1. From a study of ∼180 presumably single O-type stars in the Tarantula survey Sana et al. (in preparation) find a mean velocity of 271 km s−1 with a standard deviation of 10 km s−1. Preliminary analysis of the B-type stars in the same survey has yielded 270±17 km s−1. VFTS102 lies more than two standard deviations away from these results, implying that it might be a runaway. 3.3. Atmospheric parameters While the equatorial regions of VFTS102 will have a lower gravity than the poles (because of centrifugal forces), and hence a lower temperature (because of von Zeipel gravity darkening), we first characterise the spectrum by comparison with those generated with spatially homogeneous models, convol ved with a simple rotational-broadening function. We have used both our TLUSTY grid and FASTWIND calculations (Puls et al. 2005), adopting an LMC chemical composition. For the former, the strength of the He II spectrum implies an effective temperature (Teff) of ∼32500–35000 K, whilst the wings of the Balmer lines lead to a surface-gravity estimate of ∼3.5 dex (cgs). For the latter after allowing for wind effects, the corresponding parameters are 37000 K and 3.7 dex. The helium spectra are consistent with a solar abundance but with the observational and theoretical uncertainties we cannot rule out an enhancement. Given its projected equatorial rotation velocity, VFTS102 is almost certainly viewed at sin i ∼ 1. Hence the relatively cool, low-gravity equatorial regions will contribute significantly to the spectrum. Although their surface flux is lower than for the brighter poles, the analyses discussed above may underestimate the global effective temperature and gravity. However, the rotating-star models discussed below suggest that the effects are not very large. We therefore adopt global estimates for the effective temperature of 36000 K and 3.6 dex but note that the polar gravity could be as large as 4.0 dex. Varying the global parameters by the error estimates listed in Table 1 leads to significantly poorer matches between observation and the standard models, but, given the caveats discussed above, those errors should still be treated with caution. For near critical rotational velocities, the stellar mass can be estimated. Howarth & Smith (2001) show that the stellar mass can be written in terms of ω/ωc 2, veq and the polar radius. Assuming that sin i ∼ 1 and adopting the critical velocities from our single star models, we can estimate the first two quantities. Additionally for any given value of ω/ωc, the polar radius can be inferred from the absolute visual magnitude and the unreddened (B-V). The former can be estimated from the luminosity (see Sect. 3.4) and the latter from our effective temperature estimate and the LMC broad-band intensities calculated by Howarth (2011). We find M " 20 M# for veq ∼ 600 km s−1 and Teff ! 38000 K. Only by adopting a smaller value for veq can we push the mass limit down, but even with veq ∼ 500 km s−1 the mass must exceed ∼17M#. 3.4. Luminosity From extant photometry (see Paper I), the (B-V) colour of VFTS102 is 0.35, implying an E(B-V) of 0.6 using colours calculated from our TLUSTY grid. Adopting a standard reddening law leads to a lo garithmic luminosity (in solar units) of 5.0 dex, with an E(B-V) error of ±0.1 corresponding to an uncertainty of ±0.1 dex. However there are other possible sources of error, for example deviations from a standard reddening law and hence we have adopted a larger random error estimate of ±0.2 dex. 2The ratio of the equatorial angular velocity to that at which the centrifugal acceleration equals the gravitational acceleration. As VFTS102 is an Oe-type star, its intrinsic colours may be redder than predicted by our TLUSTY grid and indeed an infrared excess is found from published (de-reddened) 2MASS photometry. Inspection of a K-band VISTA image shows no evidence of contamination by nearby sources. Further evidence for circumstellar material is found in the strong Hα emission, which is double peaked as is the nearby He I line at 6678˚A, which supports our adoption of a sin i ∼ 1. Additionally there are weak double-peaked Fe II emission features (e.g. at 4233˚A), consistent with an Oe-type classification. Unfortunately our photometry and spectroscopy are not contemporaneous but if VFTS102 was in a high state when the optical photometry was taken, we may have overestimated the luminosity of the central star (see de Wit et al. 2006, for colour and magnitude variations of Be stars). 4. Past and future evolution Stellar evolution calculations for both single and binary stars are available in the literature (see Maeder & Meynet 2011). For very fast rotation, they suggest that rotational mixing is so efficient that stars may evolve quasi-chemically homogeneously (Maeder 1987; Woosley & Heger 2006; Cantiello et al. 2007 ; de Mink et al. 2009; Brott et al. 2011). However, with different physical assumptions, models do not evolve chemically homogeneously even for the fastest rotation rates (Cantiello et al. 2007; Ekstr¨om et al. 2008). 4.1. Single star evolution Fig. 2 illustrates evolutionary tracks for LMC single stars calculated using the methodology of Brott et al. (2011) for an initial equatorial rotational velocity of 600 km s−1, together with that for a more slowly rotating model. The former are evolving chemically homogeneously whilst the latter follows a ‘normal’ evolutionary path. Ekstr¨om et al. (2008) calculated models for a range of metallicities and masses between 3 and 60 M# but found that the stars followed normal evolutionary paths even for near critical rotational velocities. The estimated parameters of VFTS102 are consistent with our tracks for initial masses of ∼20-30 M#. Our models show a relatively rapid increase in the surface helium abundance due to their homogeneous evolution. For example the 25 M# model shows an enrichment of a factor of two after approximately 4 million years and when the effective temperature has increased to approximately 39000 K. By contrast the models of Ekstr¨om et al. (2008) show no significant helium abundance implying that an accurate helium abundance estimate for VFTS102 would help constrain the physical assumptions. –7– 4.2. Binary star evolution Below, we first discuss the environment of VFTS102 and then consider a possible evolutionary scen a rio. 4.2.1. A pulsar near VFTS102 VFTS102 lies in a complex environment near the open cluster NGC 2060. In particular it lies close to a young X-ray pulsar PSR J0537-6910 (Marshall et al. 1998) and the Crab-like supernova remnant B0538-691 (Micelotta et al. 2009). VFTS102 has an angular separation of approximately 0.8 arcminutes from PSR J0537-6910 implying a spatial separation (in the plane of the sky) of approximately 12 pc. The X-ray emission consists of a pulsed localised component and a more spatially diffuse component, with the latter providing the majority of the energy. The diffuse component was identified in ROSAT and ASCA observations by Wang & Gotthelf (1998a) and interpreted as coming from ram-pressure-confined material with the X-ray pulsar being identified soon afterwards by Marshall et al. (1998). Wang & Gotthelf (1998b) analysed ROSAT HRI observations and suggested that the emission could come from the remnants of a bow shock if the pulsar was moving with a velocity of ∼1000 km s−1. Wang et al. (2001) subsequently analysed higher spatial resolution CHANDRA observations, which clearly delineated this emission and implied that the pulsar was moving away from VFTS102. Fig. 3 superimposes these emission contours onto an HST optical image with VFTS102 being near the tail of these contours. As discussed by Wang et al. (2001) the spatial distribution of the diffuse X-ray emission and the SNR optical emission are well correlated. Differences probably arise from a foreground dark cloud and photoionization and mechanical energy input from the nearby open cluster. Timing measurements imply that the pulsar has a characteristic age of 5000 years (Marshall et al. 1998), consistent with the age estimate of Wang & Gotthelf (1998b) from analysis of X-ray emission. Spyrou & Stergioulas (2002) discuss the estimation of ages from spin rates and find the results to be sensitive to both the breaking index and the composition of the pulsar core. Indeed phase connected braking index measurements for young pulsars (see Zhang et al. 2001, and references therein) yield breaking indices lower than the n=3 normally adopted with corresponding increases in the characteristic ages. Additionally, Chu et al. (1992) found an age of approximately 24000 years from the kinematics of the supernova remnant. Adopting an age of 5000 years would imply that if these objects had been part of a binary system, their relative velocity (vs ) in the plane of the sky would be approximately 2500 km s−1. Increasing this age to 24000 years would then imply vs ∼ 500 km s−1. These values although large are consistent with a pulsar velocity of 1000 km s−1 in the model of Wang & Gotthelf (1998b) and of ∼600 km s−1 from the separation of the diffuse X-ray and radio emission (Wang et al. 2001). Additionally Hobbs et al. (2005) found a mean space velocity of approximately 400 km s−1 for a sample of young pulsars with velocities as high as 1600 km s−1. From the theoretical point of view, Stone (1982) found supernova kick velocities normally in excess of 300 km s−1, while more recently Eldridge et al. (2011) estimated kickvelocities for a single neutron star of more than 1000 km s−1with a mean value of ∼500 km s−1. 4.2.2. A binary evolution scenario for VFTS1 02 While the fast rotation of VFTS102 might be the result of the star formation process, it could also have arisen from spin-up due to mass transfer in a binary system (Packet 1981). A subsequent superno va explosion of the donor star could then lead to an anomalous radial velocity for VFTS102 (Blaauw 1961; Stone 1982). The nearby pulsar and supernova remnant make this an attractive scenario. Of course, we cannot eliminate other possible scenarios, e.g. dynamical ejection from a cluster (see Gvaramadze & Gualandris 2011) but it is unclear whether these could produce the very large rotational velocity of VFTS102. Cantiello et al. (2007) have modelled a binary system with initial masses of 15 and 16 M# adopting SMC metallicity. After mass transfer the primary exploded as a type Ib/c supernova. At that stage the secondary has a mass of approximately 21 M#, a rotational velocity close to critical and a logarithmic luminosity of approximately 4.9 dex (see Fig. 2 for its subsequent evolution). These properties closely match the estimates for VFTS102 summarized in Table 1. Based on grids of detailed binary evolutionary models (Wellstein et al. 2001; de Mink et al. 2007), the initial masses of the two components of such a binary system should be comparable, with M2/M1 " 0.7. If the initial mass of the secondary was in the range of 14-18 M#, that of the primary would need to be smaller than about 25 M#. This agrees with the estimated initial mass of the supernova progenitor based on the kinematics of the supernova remnant (Micelotta et al. 2009). In this scenario, it takes the primary star about 11 Myr to evolve to the supernova stage. While the most massive stars in 30 Doradus have ages of a few million years (Walborn et al. 1999), there is also evidence for different massive stellar populations with ages ranging up to about 10 Myr (Walborn & Blades 1997). Recently, De Marchi et al. (2011) have undertaken an extensive study of lower mass (!4 M#) main sequence and pre-main sequence stars in 30 Doradus. They obtain a median age of 12 Myr with ages of up 30 Myr. Hence it would appear possible that the putative binary system formed in the vicinity of 30 Doradus approximately 10 Myr ago and underwent an evolutionary history similar to that modelled by Cantiello et al. (2007). Proper motion information would be extremely valuable to further test this hypothesis. PSR J0537-6910 has not been definitely identified in other wavelength regions. Mignani et al. (2005) using ACS imaging from the Hubble Space telescope found two plausible identifications that would imply an optical luminosity similar to the Crab-like pulsars. A radio survey by Manchester et al. (2006) only yielded an upper limit to its luminosity consistent with other millisecond pulsars. However estimates for both components may be obtained from the HST proper motion study (Programme: 12499; PI: D.J. Lennon) that is currently underway. 4.3. Evolutionary future Irrespective of the origin of VFTS102, it is interesting to consider its likely fate. Stellar evolutionary models of rapidly rotating stars have recently been generated by Woosley & Heger (2006) and Yoon et al. (2006). The latter consider the fate of objects with rotational velocities up to the critical val ue (vc ). The evolution is shown to depend not only on initial mass and rotational velocity but also on the metallicity. In particular GRBs are predicted to occur only at sub-solar metallicities. Based on our single star models, VFTS102 has a rotational velocity above ∼ 0.8vc and is thus expected to evolve quasi-chemically homogeneously. While Yoon et al. (2006) and Woosley & Heger (2006) estimate the metallicity threshold for GRB formation from chemically homogeneous evolution to be somewhat below the LMC metallicity, the latter note its sensitivity to the mass loss rate (Vink & de Koter 2005). Indeed all our most rapidly rotating 20 − 30 M# models are evolving chemically homogeneously throughout core hydrogen burning (Fig. 2), a prerequisite to qualify for a GRB progenitor. In any case, within the context of homogeneous evolution VFTS102 is expected to form a rapidly rotating black hole, and a Type Ic hypernova. This conjecture remains the same within the binary scenario of Cantiello et al. (2007). Assuming a space velocity of 40 km s−1 for VFTS102 (compatible with its anomalous radial velocity), our evolutionary models imply that VFTS102 will travel ∼300-400 pc before ending its life. This is consistent with the finding of Hammer et al. (2006) that the locations of three nearby GRBs were found several hundred parsecs away from their most likely progenitor birth locations (see, however, Margutti et al. 2007; Wiersema et al. 2007; Han et al. 2010). 5. Conclusions VFTS102 has a projected rotational velocity far higher than those found in previous surveys of massive stars in the LMC, and indeed it would appear to qualify as the most rapidly rotating massive star yet identified. With a luminosity of 105 L# we estimate its current mass to be approximately 25 M#. Its extreme rotation, peculiar radial velocity, proximity to the X-ray pulsar PSR J0537-6910 and to a superno va re mnant suggest that the star is the result of binary interaction. It is proposed that VFTS102 and the pulsar originated in a binary system with mass transfer spinning-up VFTS102 and the supernova explosion imparting radial velocity kicks to both components. If evolving chemically homogeneously, as suggested by recent models, VFTS102 could become a GRB or hypernova at the end of its life. Additionally it may provide a critical test case for chemically homogeneous evolution. SdM acknowledges NASA Hubble Fellowship grant HST-HF- 51270.01-A awarded by STScI, operated by AURA for NASA, contract NAS 5-26555. NM acknowledges support from the Bulgarian NSF (DO 02-85). We would like to thank Paul Quinn, Stephen Smartt, Jorick Vink and Nolan Walborn for useful discussions. This paper makes use of spectra obtained as part of the VLT-FLAMES Tarantula Survey (ESO programme 182.D-0222). Facilities VLT:Kueyen (FLAMES) Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop Zombie Planets Proxima Centauri b TRAPPIST-1
- Photo Albums | SPACELIA
Photo Album
- Space Discoveries of 2021 | SPACELIA
2021 Space Discoveries Amateur astronomer discovers a new moon around Jupiter A previously-unknown moon has been detected around the largest planet in the solar system. Jupiter is a giant, so it gravitationally attracts many objects into its vicinity. Earth has one major moon, Mars has two: but Jupiter boasts at least 79 moons, and there may be dozens or hundreds more of them that astronomers have yet to identify. The latest discovery was made by amateur astronomer Kai Ly, who found evidence of this Jovian moon in a data set from 2003 that had been collected by researchers using the 3.6-meter Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. Ly they confirmed the moon was likely bound to Jupiter's gravity using data from another telescope called Subaru. The new moon, called EJc0061, belongs to the Carme group of Jovian moons. They orbit in the opposite direction of Jupiter's rotation at an extreme tilt relative to Jupiter's orbital plane. NASA will return to Venus this decade Mars is a popular target for space agencies, but Earth's other neighbor has been garnering more attention recently. In 2020, researchers announced that they had detected traces of phosphine in Venus' atmosphere. It is a possible biosignature gas, and the news certainly reawakened interest in the planet. In early June 2021, NASA announced it will launch two missions to Venus by 2030. One mission, called DAVINCI+ (short for Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging, Plus) will descend through the planet's atmosphere to learn about how it has changed over time. The other mission, VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) will attempt to map the planet's terrain from orbit like never before. Venus has been visited by robotic probes, but NASA has not launched a dedicated mission to the planet since 1989. The interest in Martian exploration may be one reason why Venus has been neglected in recent decades, but the second planet from the sun is also a challenging place to study. Although it may have once been a balmy world with oceans and rivers, a runaway greenhouse effect took hold of Venus around 700 million years ago and now the planet's surface is hot enough to melt lead. The sun is reawakening The sun was experiencing a quiet time in its roughly decade-long cycle, but it is now exiting that phase. The sun has had very little activity in recent years, but the star's surface is now erupting in powerful events that spew out charged particles towards Earth. In early November, for instance, a series of solar outbursts triggered a large geomagnetic storm on our planet. This eruption is known as a coronal mass ejection, or CME. It's essentially a billion-ton cloud of solar material with magnetic fields, and when this bubble pops, it blasts a stream of energetic particles out into the solar system. If this material heads in the direction of Earth, it interacts with our planet's own magnetic field and causes disturbances. These can include ethereal displays of auroras near Earth's poles, but can also include satellite disruptions and energy losses. James Webb Space Telescope flies into space A whole new era of space science began on Christmas Day 2021 with the successful launch of the world's next major telescope. NASA, the European Space Agency and the Canadian Space Agency are collaborating on the $10 billion James Webb Space Telescope (JWST), a project more than three decades in the making. Space telescopes take a long time to plan and assemble: The vision for this particular spacecraft began before its predecessor, the Hubble Space Telescope, had even launched into Earth orbit. Whereas Hubble orbits a few hundred miles from Earth's surface, JWST is heading to an observational perch located about a million miles from our planet. The telescope began its journey towards this spot, called the Earth-sun Lagrange Point 2 (L2), on Dec. 25, 2021 at 7:20 a.m. EST (1220 GMT) when an Ariane 5 rocket launched the precious payload from Europe's Spaceport in Kourou, French Guiana. The telescope will help astronomers answer questions about the evolution of the universe and provide a deeper understanding about the objects found in our very own solar system. Event Horizon Telescope takes high-resolution image of black hole jet In July 2021, the novel project behind the world's first photo of a black hole published an image of a powerful jet blasting off from one of these supermassive objects. The Event Horizon Telescope (EHT) is a global collaboration of eight observatories that work together to create one Earth-sized telescope. The end result is a resolution that is 16 times sharper and an image that is 10 times more accurate than what was possible before. Scientists used EHT's incredible abilities to observe a powerful jet being ejected by the supermassive black hole at the center of the Centaurus A galaxy, one of the brightest objects in the night sky. The galaxy's black hole is so large that it has the mass of 55 million suns. Scientists spot the closest-known black hole to Earth Just 1,500 light-years from Earth lies the closest-known black hole to Earth, now called "The Unicorn ." Tiny black holes are hard to spot, but scientists managed to find this one when they noticed strange behavior from its companion star, a red giant. Researchers observed its light shifting in intensity, which suggested to them that another object was tugging on the star. This black hole is super-lightweight at just three solar masses. Its location in the constellation Monoceros ("the unicorn") and its rarity have inspired this black hole's name. Earth's second 'moon' flies off into space An object dropped into Earth's orbit like a second moon, and this year, it made its final close approach of our planet. It is classified as a "minimoon," or temporary satellite. But it's no stray space rock — the object, known as 2020 SO, is a leftover fragment of a 1960s rocket booster from the American Surveyor moon missions. On Feb. 2, 2021, 2020 SO reached 58% of the way between Earth and the moon, roughly 140,000 miles (220,000 kilometers) from our planet. It was the minimoon's final approach, but not its closest trip to Earth. It achieved its shortest distance to our planet a few months prior, on Dec. 1, 2020. It has since drifted off into space and away from Earth's orbit, never to return. Parker Solar Probe travels through the sun's atmosphere This year, NASA's sun-kissing spacecraft swam within a structure that's only visible during total solar eclipses and was able to measure exactly where the star's "point of no return" is located. The Parker Solar Probe has been zooming through the inner solar system to make close approaches to the sun for the past three years, and it is designed to help scientists learn about what creates the solar wind, a sea of charged particles that flow out of the sun and can affect Earth in many ways. The spacecraft stepped into the sun's outer atmosphere, known as the corona , during its eight solar flyby. The April 28 maneuver supplied the data that confirmed the exact location of the Alfvén critical surface: the point where the solar wind flows away from the sun, never to return. The probe managed to get as low as 15 solar radii, or 8.1 million miles (13 million km) from the sun's surface. It was there that it passed through a huge structure called a pseudostreamer, which can be seen from Earth when the moon blocks the light from the sun's disk during a solar eclipse . In a statement about the discovery, NASA officials described that part of the trip as "flying into the eye of a storm." Perseverance begins studying rocks on Mars Last but not least, this year marked the arrival of NASA's Perseverance rover on Mars. The mission has been working hard to find traces of ancient Martian life since it reached the Red Planet on Feb. 18, 2021. Engineers have equipped Perseverance with powerful cameras to help the mission team decide what rocks are worth investigating. One of Perseverance's most charming findings has been "Harbor Seal Rock ," a curiously-shaped feature that was probably carved out by the Martian wind over many years. Perseverance has also obtained several rock samples this year, which will be collected by the space agency for analysis at some point in the future. Perseverance is taking its observations from the 28-mile-wide (45 kilometers) Jezero Crater, which was home to a river delta and a deep lake billions of years ago.
- Proxima Centauri b | SPACELIA
Proxima Centauri b Proxima Centauri b is an exoplanet that orbits the red dwarf star Proxima Centauri, which is the closest known star to our Sun. Here's a detailed explanation of Proxima Centauri b, including information about its characteristics, atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of Proxima Centauri b: Size: Proxima Centauri b is classified as an exoplanet with a mass roughly similar to Earth's, making it about 1.3 times the mass of our planet. This places it in the category of terrestrial exoplanets, similar to Earth and Venus. Orbit: Proxima Centauri b orbits its host star, Proxima Centauri, at a very close distance, approximately 0.05 astronomical units (AU), or about 7.5 million kilometers (4.7 million miles). It completes an orbit in just around 11.2 Earth days. Habitability: Proxima Centauri b is located within the habitable zone (Goldilocks zone) of its star. This means it is in the region where conditions for liquid water to exist on the surface are possible, a key factor for potential habitability. 2. Atmosphere of Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing the atmospheres of exoplanets, especially those as distant as Proxima Centauri b, is a challenging task and often requires advanced telescopes and instruments. 3. The Search for Extraterrestrial Life or Aliens: Proxima Centauri b has generated significant interest in the search for extraterrestrial life due to its proximity to Earth and its location within the habitable zone. Scientists and astronomers are particularly interested in studying exoplanets like Proxima Centauri b because they could offer insights into the potential for life beyond our solar system. The search for extraterrestrial life extends beyond Proxima Centauri b and includes the study of other exoplanets both within and outside the habitable zone. Key aspects of this search involve looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. The discovery of life, if it exists, on Proxima Centauri b or any other exoplanet would be a profound scientific breakthrough and could have far-reaching implications for our understanding of life's prevalence in the universe. It's important to note that as of my last knowledge update in September 2021, there is no definitive evidence of extraterrestrial life, and the search continues to be an active and ongoing scientific endeavor. Future missions and advanced technology, such as the James Webb Space Telescope, are expected to provide more data and insights into the atmospheres and potential habitability of exoplanets like Proxima Centauri b. Comparison with Earth Proxima Centauri b and Earth are both planets, but they have significant differences in terms of their characteristics, orbits, and potential habitability. Here's a comparison between the two: 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms, making it a terrestrial planet with a solid surface. Proxima Centauri b: Proxima Centauri b is classified as an exoplanet, and its size and mass are roughly similar to Earth's, with a mass approximately 1.3 times that of Earth. This places it in the category of terrestrial exoplanets. 2. Parent Star and Orbit: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). It takes approximately 365.25 days to complete one orbit. Proxima Centauri b: Proxima Centauri b orbits a red dwarf star known as Proxima Centauri, which is cooler and smaller than the Sun. Its orbital distance is very close to its parent star, about 0.05 astronomical units, which is much closer than Earth's distance from the Sun. Proxima Centauri b completes an orbit in approximately 11.2 Earth days. 3. Habitability and Atmosphere: Earth: Earth is known for its diverse and life-sustaining atmosphere composed primarily of nitrogen (about 78%) and oxygen (about 21%), with trace amounts of other gases. It has liquid water on its surface, a stable climate, and a variety of ecosystems that support a wide range of life forms. Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing exoplanet atmospheres, especially those as distant as Proxima Centauri b, is challenging and requires advanced telescopes and instruments. 4. Potential for Extraterrestrial Life: Earth: Earth is the only known planet to host a wide variety of life forms, from microorganisms to complex multicellular organisms, including humans. Proxima Centauri b: Proxima Centauri b is located within the habitable zone of its star, which means it could have conditions suitable for liquid water to exist on its surface. However, the presence of life on Proxima Centauri b is purely speculative at this point, and more research is needed to assess its habitability and the potential for extraterrestrial life. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f KEPLER-452b
- Chandra X-Ray Observatory | SPACELIA
Chandra X-Ray Observatory Unraveling the Cosmic Tapestry: Chandra X-ray Observatory's Saga In the grand cosmic theater, where the universe dons its most enigmatic costumes, the Chandra X-ray Observatory stands as humanity's eye into the unseen realms. Launched by NASA in 1999, Chandra has been an unrivaled pioneer, deciphering the universe's secrets encoded in X-ray frequencies. In this comprehensive exploration, we embark on a captivating journey, unveiling the multifaceted story of Chandra – its functions, motives, structure, historic milestones, and the mesmerizing discoveries that have reshaped our understanding of the cosmos. X-ray Vision: Chandra's Functions and Motive Unveiling Cosmic Hotspots Chandra's primary function is to observe high-energy X-rays emanating from celestial objects. By capturing these elusive rays, it unveils the hottest, most dynamic regions of the universe, revealing details invisible to other telescopes. Decoding Stellar Life Cycles From supernova remnants to pulsars and black holes, Chandra plays a crucial role in decoding the life cycles of stellar objects. It's a cosmic detective, providing insights into the birth, evolution, and demise of stars. Probing Galactic Nuclei Chandra's gaze extends to the hearts of galaxies, where supermassive black holes reside. By studying the radiation emitted from these active galactic nuclei, scientists gain essential clues about the cosmic processes at play. Charting the Cosmic Web Chandra contributes to mapping the large-scale structure of the universe, uncovering the vast cosmic web formed by the distribution of hot gas between galaxies. Engineering Marvel: The Structure of Chandra X-ray Observatory Mirrors of Precision Chandra's mirrors are coated with a thin layer of iridium, a choice that enhances reflectivity in the X-ray range. Nested mirrors, rather than traditional lenses, focus the incoming X-rays onto detectors with exceptional precision. Space-Resilient Design Crafted to endure the rigors of space, Chandra orbits Earth in an elliptical trajectory, minimizing interference from the planet's radiation belts. This resilient design ensures the telescope's longevity and sustained scientific contributions. Chronicles of Chandra: A Historic Journey Launch into the Unknown Chandra embarked on its cosmic odyssey aboard the Space Shuttle Columbia on July 23, 1999. Named after the astrophysicist Subrahmanyan Chandrasekhar, the telescope began its mission to unravel the mysteries of the X-ray universe. Milestones and Legacy Throughout its journey, Chandra has left an indelible mark on astrophysics. From confirming the existence of dark energy to identifying numerous neutron stars, its discoveries have rewritten the cosmic narrative. Conclusion: Chandra's Ongoing Odyssey As we reflect on the cosmic voyage of the Chandra X-ray Observatory, we recognize its indispensable role in reshaping our cosmic comprehension. The observatory continues to unravel the X-ray mysteries, painting a vivid portrait of the universe's hidden intricacies. "X-ray Pioneers" pays homage to the brilliance of Chandra – a beacon illuminating the celestial darkness, guiding us into the depths of the cosmos where new revelations await discovery. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Osiris-REx Mission
- Courses (All) | SPACELIA
MISSIONS Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More