Search Results
81 резултата са намерени с празно търсене
- Zombie Planets | SPACELIA
Zombie planets, also known as "pulsar planets" or "planets around pulsars," are a fascinating and relatively rare astronomical phenomenon Zombie Planets Zombie planets, also known as "pulsar planets" or "planets around pulsars," are a fascinating and relatively rare astronomical phenomenon Zombie Planets Zombie planets, also known as "pulsar planets" or "planets around pulsars," are a fascinating and relatively rare astronomical phenomenon. Here's a more detailed description and some interesting facts about zombie planets: Description: Zombie planets are exoplanets that survive the catastrophic death of their parent stars and continue to exist in orbit around a highly dense remnant called a pulsar. Pulsars are rapidly rotating neutron stars formed after massive stars undergo a supernova explosion. These pulsars emit intense beams of radiation from their poles, resembling lighthouse beams, due to their rapid rotation. If a planet is close enough to the pulsar but outside its destructive beam, it can potentially survive as a "zombie planet." Facts: Host Star Demise: Zombie planets are the remnants of planetary systems that were once part of a massive star. When the star runs out of nuclear fuel, it undergoes a supernova, releasing an enormous amount of energy, and leaving behind a collapsed core—a neutron star or pulsar. Extreme Conditions: Zombie planets are exposed to harsh conditions. They are incredibly cold and dark since they no longer receive any energy from their deceased parent star. Instead, they rely on the faint radiation and residual heat from the pulsar. Radioactive Environment: Pulsars emit powerful radiation, including X-rays and gamma rays, due to their rapid rotation and intense magnetic fields. Zombie planets within the pulsar's vicinity experience extreme radiation, making them inhospitable to life as we know it. Detection Challenges: Detecting zombie planets is challenging due to their remote and faint nature. Astronomers have to use advanced techniques, such as pulsar timing and indirect methods, to infer the presence of these planets. Potential Habitability: While the surface of zombie planets is inhospitable, there is speculation that subsurface regions or oceans shielded from radiation might harbor conditions suitable for life to exist. Candidate PSR B1257+12: One of the first and best-studied examples of a pulsar with planets is PSR B1257+12, located about 980 light-years away in the constellation Virgo. It has three known planets. Formation Theories: Zombie planets can potentially form from debris disks or leftover material around the pulsar after the supernova event. Another possibility is the capture of planets from other star systems. Interaction with Pulsar: The presence of a planet can influence the pulsar's rotational dynamics. The planet's gravitational pull causes slight variations in the pulsar's signal, enabling scientists to indirectly detect their presence. Astrophysical Curiosities: Zombie planets are intriguing astrophysical curiosities that expand our understanding of planetary systems, stellar evolution, and the complex dynamics in extreme environments. Future Exploration: As technology and observational capabilities improve, astronomers hope to discover more zombie planets and gain insights into their properties, helping us unravel the mysteries of these captivating celestial objects. Zombie planets represent a fascinating intersection of stellar remnants and planetary systems, offering a glimpse into the resilience of planets surviving extreme events in the universe. Further research and discoveries in this field may shed more light on these mysterious worlds. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1
- LHS 1140b | SPACELIA
LHS 1140b LHS 1140b is an exoplanet that orbits the red dwarf star LHS 1140, which is located in the constellation Cetus, approximately 41 light-years away from Earth. Discovered in 2017, LHS 1140b has garnered significant attention in the field of exoplanet research due to its potential for habitability and its relatively close proximity to our solar system. Here's a detailed explanation of LHS 1140b, including information about its characteristics, atmosphere, and the potential for extraterrestrial life Basic Characteristics: Size and Type: LHS 1140b is a super-Earth, which means it is larger than Earth but smaller than gas giants like Neptune. It has a radius about 1.4 times that of Earth. Orbit: It orbits its host star, LHS 1140, which is a red dwarf star, in the habitable zone. The habitable zone is the region around a star where conditions may be right for liquid water to exist on the surface of a planet, a crucial factor for the potential of life as we know it. 2. Atmosphere of TRAPPIST-1 Exoplanets: Information about the specific composition and characteristics of the atmospheres of the TRAPPIST-1 exoplanets is not fully known. Detecting and characterizing exoplanet atmospheres is a challenging task that requires advanced telescopes and instruments. Astronomers have conducted studies to analyze the potential atmospheres of these exoplanets. The presence of atmospheres would be an essential factor in determining their habitability and potential for hosting life. Habitability Factors: Temperature: LHS 1140b's location in the habitable zone suggests that it may have the right temperatures for liquid water, a key ingredient for life, to exist on its surface. Stable Environment: Being in a stable orbit around a red dwarf star, LHS 1140b is less likely to experience extreme variations in radiation, making it more suitable for habitability. Challenges to Habitability: Red dwarf stars like LHS 1140 are known for their propensity to emit high levels of X-ray and ultraviolet radiation, which can be harmful to potential atmospheres and surface conditions. However, LHS 1140b's proximity to its host star may help protect it from excessive radiation. Search for Extraterrestrial Life: Detecting signs of extraterrestrial life on LHS 1140b would require advanced instruments and observational techniques, including studying the planet's atmosphere for biosignatures such as oxygen, methane, and other chemical imbalances that could indicate biological activity. Upcoming space telescopes like the James Webb Space Telescope (JWST) and advanced ground-based observatories will play a crucial role in characterizing exoplanets like LHS 1140b and searching for signs of life. Comparison with Earth LHS 1140b and Earth are two vastly different planets, each with its own unique characteristics. Here's a comparison between the two: Size and Composition: LHS 1140b: LHS 1140b is classified as a super-Earth, meaning it is larger than Earth. It has a radius about 1.4 times that of Earth. Its composition is not well-known, but it is believed to be a rocky planet like Earth. Earth: Earth is a terrestrial planet with a well-documented composition. It has a radius of approximately 6,371 kilometers and is primarily composed of rock and metal. Distance from its Star: LHS 1140b: LHS 1140b orbits its host star, LHS 1140, at a much closer distance than Earth orbits the Sun. This proximity to its star means that LHS 1140b likely has a shorter orbital period, potentially resulting in different climate and weather patterns compared to Earth. Earth: Earth orbits the Sun at an average distance of about 149.6 million kilometers (93 million miles). This distance places it in the habitable zone, allowing for the existence of liquid water and the relatively stable climate conditions that have supported life for billions of years. Host Star: LHS 1140b: LHS 1140b orbits a red dwarf star known as LHS 1140. Red dwarfs are cooler and smaller than our Sun, which can have implications for the conditions on planets orbiting them. Earth: Earth orbits a G-type main-sequence star, which is often referred to as a yellow dwarf. The Sun is much hotter and larger than LHS 1140, providing Earth with a different energy source. Atmosphere and Climate: LHS 1140b: The composition of LHS 1140b's atmosphere is not well-known, but it's a crucial factor for habitability. Its climate and weather patterns would be influenced by its proximity to its star and the composition of its atmosphere. Earth: Earth has a diverse atmosphere primarily composed of nitrogen (about 78%) and oxygen (about 21%), which is essential for supporting life as we know it. Earth's atmosphere plays a critical role in regulating its temperature and climate. Potential for Life: LHS 1140b: LHS 1140b is considered a potentially habitable exoplanet due to its location in the habitable zone. However, the presence of life or conditions suitable for life on LHS 1140b is purely speculative at this point and requires further study. Earth: Earth is the only known planet with confirmed life. It has a rich diversity of life forms, from microorganisms to complex multicellular organisms, including humans. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b KEPLER-186f Proxima Centauri b
- Spacelia App | SPACELIA
Keep up to date with cosmos news and discoveries, Install Spacelia Spaces App to get updates Install Our App Install SPACELIA app for group quiz, news and latest updates about this site changes. install it in your compatible platform. Download the app now! Get Updates Get the latest app version, news & updates. Subscribe to our newsletter. Subscribe Thanks for submitting!
- Kepler 452 System | SPACELIA
The TRAPPIST-1 system is a planetary system with seven Earth-sized planets orbiting a red dwarf star, TRAPPIST-1, located about 40 light-years away. Three of these planets, TRAPPIST-1e, f, and g, are within the star's habitable zone, where temperatures could allow for liquid water on the surface. Map of the Kepler 452 planetary system. Kepler 452 The Kepler-452 planetary system, discovered by the Kepler Space Telescope, consists of a sun-like star, Kepler-452, and at least one exoplanet, Kepler-452b. Kepler-452b is a "super-Earth" type planet located within the star's habitable zone, meaning it could potentially have liquid water on its surface. Kepler-452 b
- Hubble's Nebulae | SPACELIA
Hubble's Nebulae Hubble telescope discovered some nebulae here is an image and detail of the nebulae and other information about it. Emission Nebulae Emission nebulae are so named because they emit their own light. This type of nebula forms when the intense radiation of stars within or near the nebula energizes the gas. A star’s ultraviolet radiation floods the gas with so much energy that it strips electrons from the nebula’s hydrogen atoms, a process called ionization. As the energized electrons revert from their higher-energy state to a lower-energy state by recombining with atoms, they emit energy in the form of light, causing the nebula’s gas to glow. A famous example of an emission nebula is the Orion Nebula, a huge, star-forming nebula in the constellation Orion. The Orion Nebula is home to a star cluster defined by four massive stars known as the Trapezium. These stars are only a few hundred thousand years old, about 15-30 times the mass of the Sun, and so hot and bright that they’re responsible for illuminating the entire Orion nebula. But thousands of additional, mostly young stars are embedded in the nebula. The most massive are 50 to 100 times the mass of our Sun. The radiation and solar winds of stars within emission nebulae carve and sculpt the nebula’s gas, creating caverns and pillars but also creating pressures on the gas clouds that can give rise to more starbirth. Reflection Nebulae Reflection nebulae reflect the light from nearby stars. The stars that illuminate them aren’t powerful enough to ionize the nebula’s gas, as with emission nebulae, but their light scatters through the gas and dust causing it to glow ― like a flashlight beam shining on mist in the dark. Because of the way light scatters when it hits the fine dust of the interstellar medium, these reflection nebulae are often bluish in color. A reflection nebula called NGC 1999 lies close to the famous Orion Nebula, about 1,500 light-years from Earth. The nebula is illuminated by a bright, recently formed star called V380 Orionis, and the gas and dust of the nebula is material left over from that star’s formation. A second well-known reflection nebula is illuminated by the Pleiades star cluster. Most nebulae around star clusters consist of material that the stars formed from. But the Pleiades shines on an independent cloud of gas and dust, drifting through the cluster at about 6.8 miles/second (11 km/s). Planetary Nebulae When astronomers looked at the sky through early telescopes, they found many indistinct, cloudy forms. They called such objects “nebulae,” Latin for clouds. Some of the fuzzy objects resembled planets, and these earned the name “planetary nebulae.” Today these nebulae keep the name, but we know they have nothing to do with planets. Planetary nebulae form during the death of low-mass to medium-mass stars. When such stars die, they expel their outer layers into space. These expanding shells of gas form a huge variety of unique shapes ― rings, hourglasses, rectangles, and more ― that show the complexity of stellar death. Astronomers are still studying how these intricate shapes form at the end of a star’s life. As the star casts off its outer layers, it leaves behind its core, which becomes a white dwarf star. White dwarf stars are objects with the approximate mass of the Sun but the size of Earth, making them one of the densest forms of matter in the universe after black holes and neutron stars. The white dwarf star’s ultraviolet radiation ionizes the gas of the planetary nebula and causes it to glow, just as stars do in emission nebulae. Our Sun is expected to form a planetary nebula at the end of its life. Supernova Remnants Not all stars die gently, exhaling their outer layers into space. Some explode in a supernova, flinging their contents into space at anywhere from 9,000 to 25,000 miles (15,000 to 40,000 kilometers) per second. When a star has a lot of mass ― at least five times that of our Sun ― or is part of a binary system in which a white dwarf star can gravitationally pull mass from a companion star, it can explode with the brightness of 10 billion Suns. Supernova remnants consist of material from the exploded star and any interstellar material it sweeps up in its path. The new debris from the explosion and material ejected by the star earlier in its life collide, heating up in the shock until it glows with x-rays. Supernova remnants’ glow can also be powered by the stellar wind of a pulsar ― a rapidly spinning neutron star created from the core of the exploded star. The pulsar emits electrons that interact with the magnetic field it produces, a process called synchrotron radiation, and emits X-rays, visible light and radio waves. Absorption Nebulae Absorption nebulae or dark nebulae are clouds of gas and dust that don’t emit or reflect light, but block light coming from behind them. These nebulae tend to contain large amounts of dust, which allows them to absorb visible light from stars or nebulae beyond them. Astronomer William Herschel, discussing these seemingly empty spots in the late 1700s, called them “a hole in the sky.” Included among absorption nebulae are objects like Bok globules, small, cold clouds of gas and dense cosmic dust. Some Bok globules have been found to have warm cores, which would be caused by star formation inside, and further observation has indicated the presence of multiple stars of varying ages, suggesting a slow, ongoing star formation process. The Crab Nebula is an example of a supernova remnant. The explosion that created it in the year 1054 was so bright that for weeks it could be seen even in the daytime sky, and it was recorded by astronomers across the world. The material from the star is still rushing outward at around 3 million mph (4.8 million kph). Hubble's Nebulae Gallery
- Photo Albums | SPACELIA
Photo Album
- Creation of Mind Loop | SPACELIA
In this article, I will tell you a mindset that will shock you. After a lot of deep thinking and hard work, I am writing this article. This article is basically about our mind, what is it?, how is it?, what is the impact?, I will tell you all this further in the article, so reading the entire article will be very interesting and mind opening. Creation of Mind Loop This article is about mind and power of mind and totally different mindset which blows your mind. Introduction In this article, I will tell you a mindset that will shock you. After a lot of deep thinking and hard work, I am writing this article. This article is basically about our mind, what is it?, how is it?, what is the impact?, I will tell you all this further in the article, so reading the entire article will be very interesting and mind opening. And if you have not signed up, then do it quickly and subscribe so that you can be the first to get whatever new update comes, keep watching, and stay tuned. Unique Mindset I believe that whatever we are seeing or thinking is the work of our mind, it could just be our desire to think too far or the desire to get fame. And I am not only saying this, behind this also I have some strong point of view, which I will explain to you further. So first of all you clear this that what I want to say and what is my point, I am simply saying that we are making new theories in the universe and all these discoveries etc. are all just a mindset of ours. There is potential and all the theories that have been made are here. Understand that today I have given you a strong statement and someone else has modified and presented the same statement in a better way, this is the theory. I am not saying at all that all this is wrong, just till this article you should believe that all this is the power of our imagination. Like I got an idea today that this should also be there in the universe, then my mind will start thinking more about that thing which is not there, it will start creating itself and will force me to think or to believe that My opinion is absolutely correct. This thing cannot be understood by explaining it further but perhaps if you have had such an experience then you can understand it better. The simple thing is that it could just be an illusion or overthinking of the retard. You have understood all these things, but you will say that this is just your assumption, there is no proof, I will give you that too. You must have heard about the double slit experiment, it also has the same thing. And there is a theory in which scientists are saying that the world around us is just a binary code. When you focus on that thing then it comes into real state and back it becomes virtual, so let me tell you in a similar theory. What I have created may just be my idea or my overthinking and it is also possible that I may get trapped in the loop of my own theory. The name of this theory is - "Multiplicity of Thoughts", I have given a short explanation of it in the theory section, but I felt that this topic can be very interesting, hence I am writing a special article on it. So as you experience all these things, it creates a virtualness. You must decide once to think about any domain, think something or the other that you want to be this saree, if you keep thinking in your mind for 10-20 days, then you will also feel its effect. You must have heard about the Law of Attraction, so it also adds more depth to my theory. Scientist also proved that our soul can also travel in sleeping mode, so my conclusion of this theory comes from all these points. It was only till now and I know that you will have many questions, so you can ask me through personal mail or chat on the website. And make sure to subscribe to the website. Chat Section If you have any question ask me here.... Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1
- Kepler's Exoplanets
Exoplanets that are discovered by the Kepler Telescope Kepler's Exoplanets
- Space Discoveries of 2019 | SPACELIA
2019 Space Discoveries The cosmic web revealed Every galaxy in the universe is a pit stop on a long highway of gas known as the cosmic web. Each road, or "filament," on this intergalactic interstate is made of hydrogen left over from the Big Bang ; where large quantities of hydrogen converge, clusters of galaxies appear in the dark sea of space. The web is too faint to see with the naked eye, but in October, astronomers photographed a piece of it for the first time ever. Using the faint ultraviolet glow of a distant galaxy as backlighting, the image shows blue strands of hydrogen crisscrossing through space 12 billion light-years away, connecting bright white galaxies in its path. The plasma shield that guards the realms of men There is a violent clash unfolding at the frontier of our solar system . Billions of miles from the solar system's center, crackling solar wind collides with powerful cosmic rays at a boundary called the heliopause. When NASA's twin Voyager probes passed through the region and entered interstellar space last year, astronomers saw that the heliopause is not just a symbolic boundary; it's also a physical wall of soupy plasma that deflects and dilutes the worst of the incoming radiation. This plasma "shield," as it's described in a Nov. 4 study, may deflect about 70% of cosmic rays from entering our solar system. You could call it the shield that guards the realms of men. (You won't find White Walkers on the other side, but you will find some white dwarfs.) Radio bubbles in the galaxy's gut The Fermi Bubbles are twin blobs of high-energy gas ballooning out of both poles of the Milky Way 's center, stretching into space for 25,000 light-years apiece (roughly the same as the distance between Earth and the center of the Milky Way). The bubbles are thought to be a few million years old and likely have something to do with a giant explosion from our galaxy's central black hole — but observations are scarce, as they are typically only visible to ultrapowerful gamma-ray and X-ray telescopes. This September, however, astronomers detected the bubbles in radio waves for the first time, revealing large quantities of energetic gas moving through the bubbles, possibly fueling them to grow even larger, according to the scientists' report in the journal Nature. Fermi's chimneys A whole new era of space science began on Christmas Day 2021 with the successful launch of the world's next major telescope. NASA, the European Space Agency and the Canadian Space Agency are collaborating on the $10 billion James Webb Space Telescope (JWST), a project more than three decades in the making. Space telescopes take a long time to plan and assemble: The vision for this particular spacecraft began before its predecessor, the Hubble Space Telescope, had even launched into Earth orbit. Whereas Hubble orbits a few hundred miles from Earth's surface, JWST is heading to an observational perch located about a million miles from our planet. The telescope began its journey towards this spot, called the Earth-sun Lagrange Point 2 (L2), on Dec. 25, 2021 at 7:20 a.m. EST (1220 GMT) when an Ariane 5 rocket launched the precious payload from Europe's Spaceport in Kourou, French Guiana. The telescope will help astronomers answer questions about the evolution of the universe and provide a deeper understanding about the objects found in our very own solar system. Planet in a dead star's thrall When a typical sun runs out of fuel and collapses, it may become a white dwarf — the compact, crystalline corpse of a star. If that star had any planets orbiting around it, chances are they were either obliterated in the star's final growth spurt (Earth will likely be engulfed by our sun in its final years) or sucked up and destroyed by the white dwarf's intense gravity. However, in early December, astronomers discovered an intact planet orbiting a white dwarf star for the first time ever. Spotted about 2,040 light-years from Earth, the white dwarf system seems to be emitting a strange combo of gases that could be a Neptune-like planet slowly evaporating as it circles the dead sun once every 10 days. The study adds major evidence to the theory that dead stars can host planets (at least temporarily). Solar tsunamis The Parker Solar Probe's record-setting approach to the sun made this year's biggest solar science headlines, but arguably the most epic sun study came months earlier, in February, according to scientists writing in the journal Scientific Reports. The researchers described a solar phenomenon called "terminator events " — basically, cataclysmic magnetic-field collisions at the sun's equator. More epic still, the authors wrote, these collisions may result in twin tsunamis of plasma tearing across the star's surface at 1,000 feet (300 meters) per second in both directions. These gargantuan (though still theoretical) solar tsunamis could last for weeks at a time and may occur every decade or so. The next one could be due in early 2020, the authors wrote, which would give the Parker probe something truly gnarly to behold. Black hole babies from the early universe In March, Japanese astronomers searched for baby pictures of the universe by turning their telescope to a corner of space 13 billion light-years away. There, they spied 83 previously undiscovered supermassive black holes dating to the early days of the universe. The holes — actually a bunch of quasars , or huge, luminous disks of gases and dust that surround supermassive black holes — were around as few as 800 million years after the Big Bang, making them some of the earliest objects ever detected. The composite image of all 83 quasars (above) may not be as cute as your own baby pictures, but it's arguably way cooler. Renegade star flees rare black hole In September, astronomers detected one of the fastest renegade stars ever recorded, fleeing across the Milky Way at 1.2 million mph (2 million km/h). Most stars moving at such blazing speeds are usually the survivors of a binary system that got ripped in half by a supermassive black hole or exploding supernova, but this speedy sun appeared to be different. After tracking the star's velocity and trajectory, researchers determined that it seemed to have suffered a run-in with a mid-mass black hole — that is, a black hole with hundreds to hundreds of thousands of times the mass of the sun (as opposed to a supermassive black hole , which can be millions or billions of times the sun's mass). This theoretical type of black hole has never been observed before, and scientists have never found convincing evidence that they actually exist. Now, one speedy star might shine the way to the proof that scientists have been looking for. Fast radio burst followed home Fast radio bursts (FRBs) are intensely bright, vanishingly brief pulses of radio energy that constantly zip across the universe like invisible bullets. What are they, exactly — belches of radiation from supermassive black holes? The pulses of alien spaceship engines ? Scientists don't know for sure, but a team of researchers came closer to solving the puzzle in June when they tracked an FRB across space and time to its precise origins for the first time ever. Using a radio telescope array in the Australian outback, the researchers found the burst in question (which lasted a fraction of a millisecond) originated from a Milky Way-size galaxy about 3.6 billion light-years from Earth, which was no longer producing fresh stars. These results show that FRBs can form in a variety of cosmic environments (and that aliens still can't be ruled out).
- Black Hole | SPACELIA
Black holes are incredibly dense regions in space where gravity is so strong that nothing, not even light, can escape. They form from the remnants of massive stars after they collapse. Black holes play a crucial role in shaping galaxies and the universe. Their mysterious nature continues to fascinate scientists and space enthusiasts alike. Explore Black Hole BLACK HOLE A black hole is a region in space where the gravitational pull is so strong that nothing, not even light, can escape from it. They are formed when massive stars collapse under their own gravity at the end of their life cycle. Black holes can vary in size, from small ones, called stellar black holes, to supermassive black holes that reside at the centers of galaxies. Despite their mysterious nature, scientists study black holes to understand the laws of physics and the universe's evolution. intriguing properties continue to captivate researchers and space enthusiasts alike.
- Black & White Universe | SPACELIA
How beautiful the space is right?, Yaa it is but not because beautiful colorful looking images, universe has no color in it self, universe is beautiful because we have connection with it with it's mysteries and it's vast expanse. Black & White Universe How beautiful the space is right?, Yaa it is but not because beautiful colorful looking images, universe has no color in it self, universe is beautiful because we have connection with it with it's mysteries and it's vast expanse. All of you must be knowing about the beauty of the universe, how beautiful it looks, have you people gone to space and seen the universe? We only see it in images and this is the truth, right? Not actually, the universe does not look like this from space, it does not look like this, then what is the universe like? And why does it look messy in images? You will get the answers to all these questions today. NASA and other space agencies release many space images and in them space looks like this (Image 1) and it should be exactly like this only then it appears like this in the photo, the universe does not look like this at all, and no objects of the universe (galaxy, star, nebula etc.) have any color of their own, then how do the images look so messed up? Actually telescopes capture infrared rays and they are given color grading through their intensity, high intensity is blue and low is red, and after some such processing those images has become something like this (following picture), so are all these agencies cheating us? No, if the image is black & white then you will not like to see it at all and maybe you are not even that interested in it, and that is why all agencies release color graded images for public release. But space is shown to be very beautiful and peaceful! Movies are for your entertainment and not a science class, so that is why space is shown to be corporeal and beautiful in movies so that your interest remains. So is the view of space shown in Passengers movie not correct? Yes it is an animation, and in fact the view of space shown in all the movies is not correct. How stars are looking bright? There is no color, form or sound of any object in the space because that medium is not available for travelling there, so all the capturing that we do comes in black & white only, you might have this question in your mind that why do stars appear shining?, so the more the intensity of the object will be the more visible to us, like we see the sun which is very close to us and that is why it is visible, similarly the stars have their own light, the brighter the star will be, the brighter its light will be and that is why it appears shining, and this thing is applicable to other objects as well. How Galaxies are looks? Galaxy is so bright because of lots of stars and its glowing center but it doesn’t mean that it looks like this colorful. Same is the principle with galaxy, it doesn’t look so beautiful, even galaxies are not visible, you will not see any shape of galaxy in real life, because we can’t see gases through telescope, we can only see bright things in real form like stars and galaxy center, rest everything is the magic of software, so whenever you see Andromeda in image then remember that it doesn’t look like this as you can see the difference of andromeda galaxy. “The beauty isn’t means the looks everytime, sometimes it means the connection to the UNIVERSE” The universe is expanding, and that expansion stretches light traveling through space in a phenomenon known as cosmological redshift. The greater the redshift, the greater the distance the light has traveled. Within the Hubble Deep Field-North region, astronomers pinpointed a blaze of light from one of the farthest supernovas ever seen. In a close-up view of that region (left) a white arrow points to a faint elliptical, the home of the exploding SN 1997ff. The supernova itself (right) is distinguished by the white dot in the center. This diagram reveals changes in the rate of expansion since the universe's birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion. The curve changes noticeably about 7.5 billion years ago, when objects in the universe began flying apart as a faster rate. Astronomers theorize that the faster expansion rate is due to a mysterious, dark force that is pulling galaxies apart. This image is a portion of the GOODS-North field. The field features approximately 15,000 galaxies, about 12,000 of which are forming stars. Hubble’s ultraviolet vision opened a new window on the evolving universe, tracking the birth of stars over the last 11 billion years back to the cosmos’ busiest star-forming period about 3 billion years after the big bang. Spiral galaxy NGC 3021 (background) was one of several hosts of Type Ia supernovae observed by astronomers to refine the measure of the universe's expansion rate, called the Hubble constant. Hubble made precise measurements of Cepheid variable stars in the galaxy, highlighted by green circles in the inset boxes. Other Articles...... Zombie Planets Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1
- Hubble's Planetary Discoveries | SPACELIA
Hubble's Planetary Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Watching the weather patterns on the giant outer planets (Jupiter, Saturn, Uranus, and Neptune) has been an ongoing activity throughout Hubble’s lifetime. Jupiter's monster storm, the Great Red Spot, was once so large that three Earths would fit inside it. But new measurements by Hubble reveal that the largest storm in our solar system has downsized significantly. The Red Spot, which has been raging for at least a hundred years, is now only the width of one Earth. The storm images were taken in 1995, 2009, and 2014. The images were taken with Wide Field and Planetary Camera 2 (1995) and Wide Field Camera 3. The large Wide Field Camera 2 image of Jupiter was obtained in 2007, with its moon, Ganymede, just emerging from behind the planet. The semi-major axis of Jupiter's orbit about the Sun is 5.2 astronomical units (483 million miles or 778 million km). The planet has a diameter of roughly 88,789 miles (142,984 km) at the equator. This image of Europa is derived from a global surface map generated from combined NASA Voyager and Galileo space probe observations. The graphic shows the location of water vapor detected over Europa's south pole by Hubble in December 2012. The Hubble observations provide the best evidence to date of water plumes erupting off Europa's surface. Hubble didn't photograph plumes, so the plume and the illustration in the center are artist’s conceptions. However, Hubble observers used the Space Telescope Imaging Spectrograph to spectroscopically detect auroral emissions from oxygen and hydrogen. The aurora is powered by Jupiter's magnetic field. This is only the second moon in the solar system found ejecting water vapor from the frigid surface. Another of Jupiter’s moons, Ganymede, is also likely to have a subsurface ocean. Europa is the sixth closest Jovian moon. It is the smallest of the four Jovian satellites discovered by Galileo Galilei, but still the sixth largest moon in the Solar System. Europa was discovered by Galileo in 1610. Images taken in ultraviolet light by Hubble’s Space Telescope Imaging Spectrograph (STIS) show both Jupiter auroras in 1998, the oval-shaped objects in the inset photos. Ground-based telescopes cannot view these phenomena in ultraviolet light, as it is blocked by the Earth’s atmosphere. Auroras are curtains of light resulting from high-energy electrons racing along the planet's magnetic field into the upper atmosphere. The electrons excite atmospheric gases, causing them to glow. The electric-blue image of Jupiter’s northern aurora shows the main oval of the aurora, which is centered on the magnetic north pole, plus more diffuse emissions inside the polar cap. Though the aurora resembles the same phenomenon that crowns Earth's polar regions, the blue Hubble image shows unique emissions from the magnetic "footprints" of three of Jupiter's largest moons. (These points are reached by following Jupiter's magnetic field from each satellite down to the planet). Jupiter has at least 68 moons. Auroral footprints can be seen in this image from Io (along the left-hand limb), Ganymede (near the center), and Europa (just below and to the right of Ganymede's auroral footprint). These emissions, produced by electric currents generated by the satellites, flow along Jupiter's magnetic field, bouncing in and out of the upper atmosphere. They are unlike anything seen on Earth. This ultraviolet image of Jupiter was taken with the Hubble Space Telescope Imaging Spectrograph (STIS) on November 26, 1998. In this ultraviolet view, the aurora stands out clearly, but Jupiter's cloud structure is masked by haze. Saturn’s aurora was observed with Hubble in 2005. Images were obtained with the Advanced Camera for Surveys in the optical and STIS in the ultraviolet. The aurora appeared in Saturn’s southern polar region for several days. Hubble snapped a series of photographs of the aurora dancing in the sky. The snapshots show that Saturn's auroras differ in character from day to day -- as they do on Earth -- moving around on some days and remaining stationary on others. But compared with Earth, where auroral storms develop in about 10 minutes and may last for a few hours, Saturn's auroral displays always appear bright and may last for several days. Recently, NASA’s New Horizons mission imaged Pluto and two of its moons, Nix and Hydra, which were discovered by Hubble in 2005. Peering out to the dim, outer reaches of our solar system beyond Pluto, Hubble uncovered three Kuiper Belt objects (KBOs) that the agency's New Horizons spacecraft could potentially visit after it flies by Pluto in July 2015. The KBOs were detected through a dedicated Hubble observing program by a New Horizons search team that was awarded telescope time for this purpose. The lower set of Pluto images shows Hubble Space Telescope data from the Advanced Camera for Surveys exhibiting an icy, mottled, dark molasses-colored world undergoing seasonal surface color and brightness changes. Pluto has become significantly redder, while its illuminated northern hemisphere is getting brighter. These changes are most likely consequences of surface ice melting on the sunlit pole and then refreezing on the other pole, as the dwarf planet heads into the next phase of its 248-year-long seasonal cycle. Analysis shows the dramatic change in color took place from 2000 to 2002. Note that Hubble found four of Pluto’s five moons – Nix, Hydra, Styx and Kerberos. http://hubblesite.org/newscenter/archive/releases/2014/47/full/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2010/06/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2012/32/ and related links http://www.nasa.gov/nh_new-horizons-spots-small-moons-orbiting-pluto/#.VPnlP2TF_b4 http://pluto.jhuapl.edu/ Other outer solar system objects: Eris is 1.27 times the mass of Pluto, and formerly the largest member of the Kuiper Belt of icy objects beyond Neptune. Hubble observations in 2006 showed that Eris is slightly physically larger than Pluto. But the mass could only be calculated by observing the orbital motion of the moon Dysnomia around Eris. Multiple images of Dysnomia's movement along its orbit were taken by Hubble and Keck. http://hubblesite.org/newscenter/archive/releases/solar%20system/2007/24/image/c/format/web/ Also in 2002, Hubble measured a large object discovered in the outer solar system. It was the largest outer solar system object discovered since Pluto and was superseded by the observation of Eris. Approximately half the size of Pluto, the icy world is called "Quaoar" (pronounced kwa-whar). Quaoar is about 4 billion miles away, more than a billion miles farther than Pluto. Like Pluto, Quaoar dwells in the Kuiper belt, an icy belt of comet-like bodies extending 7 billion miles beyond Neptune's orbit. http://hubblesite.org/newscenter/archive/releases/2002/17/ The upper image, taken by Hubble, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit around its parent star, Fomalhaut. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere. The black circle at the center of the image is caused by a device called a coronograph, which blocks out the otherwise overwhelming light from the bright star and allows reflected light from the belt and planet to be photographed. The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012. Fomalhaut is 25 light years (8 parsecs) away. http://hubblesite.org/newscenter/archive/releases/2013/01/ The lower graphic demonstrates Hubble’s first detection ever of an organic molecule in the atmosphere of a Jupiter-sized planet orbiting another star. This breakthrough is an important step toward eventually identifying signs of life on a planet outside our solar system. The molecule found by Hubble is methane, which under the right circumstances can play a key role in prebiotic chemistry — the chemical reactions considered necessary to form life as we know it. The graphic shows a spectrum of methane with the configuration of the star and the planet (not to scale) in relation to Hubble. The object is 63 light years (19 parsecs) away. http://hubblesite.org/newscenter/archive/releases/2008/11/
- Missions | SPACELIA
List of all the biggest and revolutionary Space Missions by different different space agencies. MISSIONS List of all the Space Mission. 1957: Sputnik 1 (Soviet Union First artificial satellite to orbit Earth, marking the beginning of the space age. It transmitted radio signals, allowing scientists to study atmospheric drag. Read More 1957: Sputnik 2 (Soviet Union) Carried Laika, the first living creature in space, proving that living beings could survive spaceflight. However, Laika died due to overheating. Read More 1958: Explorer 1 (USA) First American satellite, which discovered the Van Allen radiation belts. It provided crucial data on Earth's magnetosphere. Read More 1961: Vostok 1 (Soviet Union) First human spaceflight with cosmonaut Yuri Gagarin, who orbited Earth once. The mission proved that humans could survive space travel. Read More 1961: Mercury-Redstone 3 (USA) First American manned spaceflight, piloted by Alan Shepard. The suborbital flight lasted 15 minutes, demonstrating controlled human spaceflight. Read More 1966: Luna 9 (Soviet Union) First spacecraft to achieve a soft landing on the Moon. It transmitted panoramic images of the lunar surface. Read More 1969: Apollo 11 (USA) First successful human landing on the Moon with Neil Armstrong and Buzz Aldrin. Armstrong’s famous words: "That's one small step for man, one giant leap for mankind." Read More 1971: Mars 3 (Soviet Union) First spacecraft to land on Mars, but lost communication after 14.5 seconds. It sent the first-ever image from the Martian surface. Read More 1973: Skylab (USA) First American space station, used for scientific experiments in microgravity. It hosted three crewed missions before deorbiting in 1979. Read More 1975: Aryabhata (India) India's first satellite, designed for experiments in X-ray astronomy and solar physics. It established India's capabilities in satellite technology. Read More 1977: Voyager 1 & 2 (USA) Twin space probes launched to explore the outer Solar System and interstellar space. They provided detailed images of Jupiter, Saturn, Uranus, and Neptune. Read More 1981: STS-1 Columbia (USA) First space shuttle mission, testing reusable spacecraft technology. Columbia successfully launched and landed after a two-day mission. Read More 1986: Mir (Soviet Union) First modular space station, serving as a long-term research facility. It operated for 15 years before deorbiting in 2001. Read More 1990: Hubble Space Telescope (USA/ESA) Space-based observatory providing deep-space images in visible and ultraviolet light. It revolutionized our understanding of the cosmos. Read More 1998: International Space Station (ISS) (International) Largest man-made structure in orbit, used for scientific research and space experiments. Continually inhabited since 2000 by international astronauts. Read More 2003: Mars Express (ESA) First European mission to Mars, studying the planet’s surface and atmosphere. It confirmed the presence of subsurface water ice. Read More 2003: Chandrayaan-1 (India) First Indian lunar probe, which discovered water molecules on the Moon. It significantly contributed to global lunar exploration. Read More 2004: Spirit & Opportunity (USA) Twin Mars rovers designed for a 90-day mission, but they operated for years. They provided key insights into Mars' water history. Read More 2011: Juno (USA) Spacecraft sent to study Jupiter’s atmosphere, magnetic field, and auroras. It revealed details about the planet’s deep structure. Read More 2013: Mars Orbiter Mission (India) First Indian interplanetary mission, successfully reaching Mars on its first attempt. India became the first Asian nation to achieve this feat. Read More 2014: Rosetta (ESA) First spacecraft to orbit and land a probe (Philae) on a comet. It provided valuable data on comet composition and evolution. Read More 2018: Parker Solar Probe (USA) First spacecraft to "touch" the Sun, studying the solar corona. It aims to unlock the mystery of the Sun’s atmosphere. Read More 2019: Chang'e 4 (China) First mission to land on the Moon’s far side. It carried a biological experiment and a rover to explore the surface. Read More 2021: Perseverance (USA) NASA's most advanced Mars rover, searching for signs of past microbial life. It also carried the Ingenuity helicopter, which performed the first powered flight on Mars. Read More 2021: James Webb Space Telescope (USA/ESA/Canada) Advanced space telescope designed for infrared observations. It can look back to the earliest galaxies formed after the Big Bang. Read More 2023: Chandrayaan-3 (India) India’s successful soft landing on the Moon’s south pole, carrying a rover for exploration. This mission strengthened India’s lunar capabilities. Read More 2023: Luna 25 (Russia) Intended as Russia's first lunar lander since the 1970s, Luna 25 aimed to explore the Moon's south pole but unfortunately crashed during its descent. Read More 2024: Aditya - L1 (India) Aditya-L1 is India's first solar mission that orbits the Sun-Earth L1 Lagrange point.The spacecraft is equipped with scientific payloads that study the Sun's atmosphere and explosive activity. Read More 2023: SLIM (Japan) The Smart Lander for Investigating Moon (SLIM) is Japan's mission to demonstrate precise lunar landing techniques, carrying small rovers for surface exploration. Read More 2023: Psyche (USA) NASA's mission to study the metal-rich asteroid 16 Psyche, aiming to understand planetary core formation by orbiting and analyzing the asteroid. Read More 2024: Peregrine Mission One (USA) Astrobotic's lunar lander mission aimed to deliver scientific instruments and small rovers to the Moon's surface; however, the landing was unsuccessful. Read More 2024: IM-1 Nova-C Odysseus (USA) Intuitive Machines' lunar lander mission aimed to deliver payloads to the Moon's surface, including the EagleCam deployable camera, to demonstrate lunar landing capabilities. Read More 2024: Queqiao-2 (China) China launched the Queqiao-2 relay satellite to support upcoming lunar missions, ensuring communication between Earth and the Moon's far side. Read More 2024: Chang'e 6 (China) China's mission to return samples from the Moon's far side, including contributions from international partners like Pakistan's ICUBE-Q cubesat. Read More 2024: Europa Clipper (USA) NASA's mission to conduct detailed reconnaissance of Jupiter's moon Europa, investigating its potential habitability and subsurface ocean. Read More 2025: Blue Ghost M1 (USA) Firefly Aerospace's lunar lander mission to deliver NASA and commercial payloads to the Moon's surface, supporting scientific research and technology demonstrations. Read More 2025: Hakuto-R Mission 2 (Japan) ispace's second lunar mission aiming to deliver the Tenacious rover to the Moon, enhancing commercial lunar exploration capabilities. Read More 2025: IM-2 Athena Lander (USA) Intuitive Machines' second lunar lander mission, carrying multiple payloads, including the MAPP LV1, Micro-Nova, AstroAnt, and Yaoki rover, each developed by different organizations. Read More 2025: IM-2 Athena Lander (USA) Intuitive Machines' second lunar lander mission, carrying multiple payloads, including the MAPP LV1, Micro-Nova, AstroAnt, and Yaoki rover, each developed by different organizations. Read More 2025: Lunar Trailblazer (USA) NASA's mission to map water on the Moon's surface, providing insights into lunar hydration and supporting future exploration efforts. Read More
- Hubble's Nebula Discovery | SPACELIA
Hubble's Nebula Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Beyond the solar system, Hubble has studied star formation and death in our Galaxy and nearby galaxies. As a first example, this image of the Carina Nebula was released for Hubble’s 17th anniversary. At the time (2007), it was one of the largest panoramic images ever taken with Hubble’s Advanced Camera for Surveys. It is a 50-light-year-wide view of the central region of the Carina Nebula, where a maelstrom of star birth -- and death -- is taking place. The nebula is sculpted by the action of outflowing winds and scorching ultraviolet radiation from the monster stars that inhabit this inferno. The stars are shredding the surrounding material that is the last vestige of the giant cloud from which the stars were born. The immense nebula contains at least a dozen brilliant stars that are roughly estimated to be at least 50 to 100 times the mass of our Sun. The most unique and opulent inhabitant is the star Eta Carinae, at far left. Eta Carinae is in the final stages of its brief and eruptive lifespan, as evidenced by two billowing lobes of gas and dust that presage its upcoming explosion as a titanic supernova. The outflow in the Carina region started three million years ago when the nebula's first generation of newborn stars condensed and ignited in the middle of a huge cloud of cold molecular hydrogen. Radiation from these stars carved out an expanding bubble of hot gas. The island-like clumps of dark clouds scattered across the nebula are nodules of dust and gas that are resisting being eaten away by photoionization. The blast of stellar winds and blistering ultraviolet radiation within the cavity is now compressing the surrounding walls of cold hydrogen. This is triggering a second stage of new star formation. Carina is about 7,500 light years away (2,300 parsecs). Using Hubble’s newer cameras provides a stunning image of an old favorite. This image of the Pillars of Creation in the Eagle Nebula has twice the resolution, several times the area, and more than twenty times the pixels of the 1995 version. The image was obtained with the optical bands of the Wide Field Camera 3 (WFC3) in 2015. This taller image includes the gas at the bottom of the pillars being blown down and trailing away. Numerous small features indicate the pervasiveness of pillars of every size in this region. This is the first of a sequence of three images to be shown relatively rapidly. We begin the anniversary year by revisiting a legendary image: the “Pillars of Creation” in the Eagle Nebula. This image was the first Hubble image to fascinate the public, and still remains one of Hubble’s most popular images. It was obtained in 1995 with the Wide Field and Planetary Camera 2 (WFPC2). Inside the gaseous towers, which are light-years long, the interstellar gas is dense enough to collapse under its own weight, forming young stars that continue to grow as they accumulate more and more mass from their surroundings. The object is 6,500 light years away (2,000 parsecs). Like the pillars in Carina, these dark clouds are being eroded by winds and radiation from hot, young stars. The stars forming within the pillars give them their “creation” nickname. Using the infrared capabilities of Wide Field Camera 3 (WFC3), one can see the pillars in a whole new light. Much of the gas of the nebula is transparent to the longer wavelengths of infrared light, revealing a tremendous number of stars. The seemingly solid, visible-light pillars are shown in the infrared to be a combination of dense clouds and the shadows they cast behind them. Such high resolution visible light and infrared light comparisons point toward a bright future when Hubble and James Webb Space Telescope observations can be similarly compared and contrasted. This is the first of two images to be shown of the Horsehead Nebula. The transition should be done without too much delay to the next image. In 2001, after asking the public which object should be observed, the Hubble Heritage Project took this image of the Horsehead Nebula with the Wide Field and Planetary Camera 2 (WFPC2). While the nebula makes for a striking silhouette, the dark cloud is short on detail in a visible light image. The small inset shows a ground-based optical image of the surrounding region. The distance to the object is about 1,200 light years (490 parsec). Using the enhanced infrared sensitivity of Wide Field Camera 3, Hubble was able to get much more detail in this 2013 infrared portrait of the Horsehead. The relatively featureless dark clouds are transformed into a glowing gaseous landscape that almost appears three-dimensional in the image. There are videos that zoom into the nebula and also show the 3D effect. This image of the Orion Nebula shows the discovery of debris disks – planetary systems in formation around newly created stars. As the gas and dust collapses under gravity, stars are born, and in the process, disks and planets often form out of the residual material. The distance to the Orion Nebula is 1,500 light years (460 parsecs). http://hubblesite.org/newscenter/archive/releases/1995/45/ A beautiful composite image of the Orion Nebula from both the HST ACS and the ESO MPI at La Silla is available: http://hubblesite.org/newscenter/archive/releases/2006/01/ Supplemental Movies: Orion Fly through: http://hubblesite.org/newscenter/archive/releases/2001/13/video/a/ Zoom into Orion: http://hubblesite.org/newscenter/archive/releases/2001/13/video/a/ At the heart of this star-forming region lies star cluster NGC 602. It is a cluster of newly formed stars that are blowing a cavity in the center of a star-forming region in the Small Magellanic Cloud, a companion galaxy to our own Milky Way. The high-energy radiation blazing out from the hot young stars is sculpting the inner edge of the outer portions of the nebula, slowly eroding it away and eating into the material beyond. The diffuse outer reaches of the nebula prevent the energetic outflows from streaming away from the cluster. Ridges of dust and gaseous filaments are seen surrounding the cluster. Elephant trunk-like dust pillars point towards the hot blue stars and are telltale signs of their eroding effect. It is possible to trace how the star formation started at the center of the cluster and propagated outward, with the youngest stars still forming today along the dust ridges. The Small Magellanic Cloud, in the constellation Tucana, is roughly 200,000 light-years from the Earth. Its proximity to us makes it an exceptional laboratory to perform in-depth studies of star formation processes and their evolution in an environment slightly different from our own Milky Way. This image was taken with Hubble’s Advanced Camera for Surveys. http://hubblesite.org/newscenter/archive/releases/2007/04/ X-ray from Chandra plus Hubble observations: http://hubblesite.org/newscenter/archive/releases/2013/17/image/a/ The Cat’s Eye Nebula, formally cataloged NGC 6543, was one of the first planetary nebulae to be discovered. Hubble observations show it is one of the most complex such nebulae seen in space. A planetary nebula forms when Sun-like stars gently eject their outer gaseous layers, which eventually form bright nebulae with amazing and confounding shapes. This image taken with Hubble's Advanced Camera for Surveys (ACS) reveals the full beauty of a bull's eye pattern of eleven or even more concentric rings, or shells, around the Cat's Eye. Each 'ring' is actually the edge of a spherical bubble seen projected onto the sky — that's why it appears bright along its outer edge. Observations suggest the star ejected its mass in a series of pulses at 1,500- year intervals. These convulsions created dust shells, each of which contains as much mass as all of the planets in our solar system combined (still only one percent of the Sun's mass). These concentric shells make a layered, onionskin structure around the dying star. The view from Hubble is like seeing an onion cut in half, where each skin layer is discernible. The Nebula is 3000 light years (1000 parsecs) away. This beautiful image was taken soon after Servicing Mission 4 as part of the release announcing Hubble’s return to science operations. This planetary nebula is the material blown off of a dying star. A disk around the center restricts the outflows into two oppositely directed lobes, creating a distinct resemblance to a butterfly. Although named the Bug Nebula, many began calling this object the Butterfly Nebula after this image was released. The Crab Nebula derived its name from its appearance in a drawing made by Irish astronomer Lord Rosse in 1844, using a 36-inch telescope. The Crab Nebula is a six-light-year-wide expanding remnant of a star's supernova explosion. Japanese and Chinese astronomers recorded this violent event nearly 1,000 years ago in 1054, as did -- almost certainly -- Native Americans. This composite image was assembled from 24 individual exposures taken with the Hubble Space Telescope’s Wide Field and Planetary Camera 2 in October 1999, January 2000, and December 2000. The orange filaments are the tattered remains of the star and consist mostly of hydrogen. The rapidly spinning neutron star embedded in the center of the nebula is the dynamo powering the nebula's eerie interior bluish glow. The blue light comes from electrons whirling at nearly the speed of light around magnetic field lines from the neutron star. The neutron star, like a lighthouse, ejects twin beams of radiation that appear to pulse 30 times a second due to the neutron star's rotation. A neutron star is the crushed ultra-dense core of the exploded star. This shell, or bubble, is the result of gas that is being shocked by the expanding blast wave from a supernova. Notice its completely different appearance from the Crab Nebula in the previous slide. Called SNR 0509-67.5 (or SNR 0509 for short), the bubble is the visible remnant of a powerful stellar explosion in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light-years from Earth. Ripples in the shell's surface may be caused by either subtle variations in the density of the ambient interstellar gas, or possibly driven from the interior by pieces of the ejecta. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 11 million miles per hour (5,000 kilometers per second). http://hubblesite.org/newscenter/archive/releases/2010/27/ Supplemental Movie: 3D look at SN remnant http://hubblesite.org/newscenter/archive/releases/2010/27/video/a/
- Chandra X-Ray Observatory | SPACELIA
Chandra X-ray Observatory stands as humanity's eye into the unseen realms. Launched by NASA in 1999, Chandra has been an unrivaled pioneer, deciphering the universe's secrets encoded in X-ray frequencies. In this comprehensive exploration, we embark on a captivating journey, unveiling the multifaceted story of Chandra – its functions, motives, structure, historic milestones, and the mesmerizing discoveries that have reshaped our understanding of the cosmos. Chandra X-Ray Observatory Unraveling the Cosmic Tapestry: Chandra X-ray Observatory's Saga In the grand cosmic theater, where the universe dons its most enigmatic costumes, the Chandra X-ray Observatory stands as humanity's eye into the unseen realms. Launched by NASA in 1999, Chandra has been an unrivaled pioneer, deciphering the universe's secrets encoded in X-ray frequencies. In this comprehensive exploration, we embark on a captivating journey, unveiling the multifaceted story of Chandra – its functions, motives, structure, historic milestones, and the mesmerizing discoveries that have reshaped our understanding of the cosmos. X-ray Vision: Chandra's Functions and Motive Unveiling Cosmic Hotspots Chandra's primary function is to observe high-energy X-rays emanating from celestial objects. By capturing these elusive rays, it unveils the hottest, most dynamic regions of the universe, revealing details invisible to other telescopes. Decoding Stellar Life Cycles From supernova remnants to pulsars and black holes, Chandra plays a crucial role in decoding the life cycles of stellar objects. It's a cosmic detective, providing insights into the birth, evolution, and demise of stars. Probing Galactic Nuclei Chandra's gaze extends to the hearts of galaxies, where supermassive black holes reside. By studying the radiation emitted from these active galactic nuclei, scientists gain essential clues about the cosmic processes at play. Charting the Cosmic Web Chandra contributes to mapping the large-scale structure of the universe, uncovering the vast cosmic web formed by the distribution of hot gas between galaxies. Engineering Marvel: The Structure of Chandra X-ray Observatory Mirrors of Precision Chandra's mirrors are coated with a thin layer of iridium, a choice that enhances reflectivity in the X-ray range. Nested mirrors, rather than traditional lenses, focus the incoming X-rays onto detectors with exceptional precision. Space-Resilient Design Crafted to endure the rigors of space, Chandra orbits Earth in an elliptical trajectory, minimizing interference from the planet's radiation belts. This resilient design ensures the telescope's longevity and sustained scientific contributions. Chronicles of Chandra: A Historic Journey Launch into the Unknown Chandra embarked on its cosmic odyssey aboard the Space Shuttle Columbia on July 23, 1999. Named after the astrophysicist Subrahmanyan Chandrasekhar, the telescope began its mission to unravel the mysteries of the X-ray universe. Milestones and Legacy Throughout its journey, Chandra has left an indelible mark on astrophysics. From confirming the existence of dark energy to identifying numerous neutron stars, its discoveries have rewritten the cosmic narrative. Conclusion: Chandra's Ongoing Odyssey As we reflect on the cosmic voyage of the Chandra X-ray Observatory, we recognize its indispensable role in reshaping our cosmic comprehension. The observatory continues to unravel the X-ray mysteries, painting a vivid portrait of the universe's hidden intricacies. "X-ray Pioneers" pays homage to the brilliance of Chandra – a beacon illuminating the celestial darkness, guiding us into the depths of the cosmos where new revelations await discovery. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Osiris-REx Mission
- Nearest Star System | SPACELIA
Certainly, here is a list of the 100 nearest star systems to our solar system, along with brief introduction of each system. Nearest Star Systems Certainly, here is a list of the 100 nearest star systems to our solar system, along with brief explanations for each: Alpha Centauri A : The primary star in the Alpha Centauri system, part of the closest star system to our Sun. Alpha Centauri B : The second star in the Alpha Centauri system, which includes a third star, Proxima Centauri. Proxima Centauri : The closest known star to our solar system, located in the Alpha Centauri system. Barnard's Star : The fourth-closest known individual star to our Sun, located in the Ophiuchus constellation. Luhman 16 : A binary brown dwarf system, about 6.59 light-years away from us. Wolf 359 : A red dwarf star, one of the nearest to Earth, approximately 7.8 light-years away. Lalande 21185 : A red dwarf star situated around 8.29 light-years from our Sun. Sirius : The brightest star in Earth's night sky, located about 8.6 light-years away. Ross 154 : A red dwarf star, roughly 9.69 light-years from our Sun. Ross 248 : Another red dwarf star, approximately 10.32 light-years away. Epsilon Eridani : A young star known to have at least one exoplanet, about 10.49 light-years away. 61 Cygni A : The primary star in the 61 Cygni binary system, approximately 11.41 light-years away. 61 Cygni B : The companion star in the 61 Cygni binary system. Struve 2398 A : A red dwarf star in a binary system, about 11.49 light-years away. Struve 2398 B : The companion star in the Struve 2398 binary system. Groombridge 34 A : A binary star system, around 11.62 light-years from our Sun. Groombridge 34 B : The companion star in the Groombridge 34 binary system. Procyon : Also known as Alpha Canis Minoris, it's about 11.46 light-years away and is one of the brightest stars in the night sky. Tau Ceti : Located about 11.89 light-years away, this star is often studied in the search for habitable planets. Epsilon Indi : About 11.83 light-years away, it's one of the closest solitary brown dwarfs to our Sun. Ross 128 : Approximately 11.13 light-years away, this red dwarf star is of interest for exoplanet searches. EZ Aquarii A : Part of a binary star system, approximately 11.32 light-years away . EZ Aquarii B : The companion star in the EZ Aquarii binary system. Luyten's Star : Located about 12.36 light-years away, it's a red dwarf star often used in astronomical studies. Kruger 60 A : A red dwarf star, approximately 13.1 light-years away. Kruger 60 B : The companion star in the Kruger 60 binary system. Gliese 1061 : A red dwarf star situated around 13.06 light-years away. Gliese 1 : Located about 15.76 light-years away, it's part of the Ursa Major constellation. Lacaille 8760 : Also known as AX Microscopii, it's about 12.88 light-years away. Wolf 1061 : A red dwarf star, approximately 14.05 light-years from our Sun. DX Cancri : Located about 14.82 light-years away, it's part of the Cancer constellation. Sirius B : The companion white dwarf star to Sirius A. 40 Eridani A : Also known as Keid, it's about 16.47 light-years away. 40 Eridani B : Part of the 40 Eridani binary system. 40 Eridani C : Also known as Proxima D, it's part of the 40 Eridani system. Proxima Eridani : Located around 16.44 light-years away. GJ 1066 : A red dwarf star situated around 16.87 light-years from our Sun. GJ 1214 : Known for its super-Earth exoplanet, located about 42 light-years away. GJ 1245 A : Part of a binary star system, about 17.16 light-years away. GJ 1245 B : The companion star in the GJ 1245 binary system. GJ 2005 : A red dwarf star approximately 17.52 light-years away. Kapteyn's Star : Located around 12.76 light-years away, it's one of the nearest stars to the solar system. AX Microscopii A : Part of the Lacaille 8760 binary system. AX Microscopii B : The companion star in the Lacaille 8760 binary system. Delta Eridani : Also known as DY Eridani, it's about 26.26 light-years away. GJ 402 : Located approximately 19.11 light-years away. Ross 614 : Also known as UV Ceti, it's a red dwarf star around 21.09 light-years away. Ross 780 : A red dwarf star located about 20.84 light-years away. Ross 619 : Also known as V577 Monocerotis, it's about 20.94 light-years away. Gliese 412 : A red dwarf star situated around 21.01 light-years away. AC+79°3888 : Located about 21.09 light-years away. Gliese 687 : A red dwarf star, about 21.03 light-years from our Sun. Lalande 25372 : Located approximately 21.16 light-years away. Ross 780 : Part of the Ross 780 binary system. Ross 619 : Also known as V577 Monocerotis, part of the Ross 619 binary system. Gliese 412 : Part of the Gliese 412 binary system. AC+79°3888 : Part of the AC+79°3888 binary system. Gliese 687 : Part of the Gliese 687 binary system. Lalande 25372 : Part of the Lalande 25372 binary system. Gliese 54 : A red dwarf star, approximately 21.53 light-years away. Gliese 22 : Located about 22.35 light-years away. Gliese 338 : Part of the Gliese 338 binary system, around 22.44 light-years away. Gliese 54 : Part of the Gliese 54 binary system. Gliese 22 : Part of the Gliese 22 binary system. Gliese 338 : Part of the Gliese 338 binary system. Gliese 830 : Located about 22.83 light-years away. Gliese 860 : Also known as Ross 842, it's approximately 22.36 light-years away. Gliese 880 : Located about 22.92 light-years away. Gliese 908 : Also known as V840 Cygni, situated around 22.29 light-years away. Gliese 752 : Also known as BD+02°3375, it's located approximately 22.57 light-years away. Gliese 117 : Also known as BD+43°4305, it's about 23.31 light-years away. Gliese 35 : Also known as BD-05°1844, it's around 23.51 light-years away. Gliese 559 : Also known as BD+47°3379, located approximately 23.61 light-years away. Gliese 369 : Also known as BD+75°325, it's about 23.69 light-years away. Gliese 372 : Also known as BD+35°3291, located approximately 23.70 light-years away. Gliese 109 : Also known as BD+63°1985, it's about 23.84 light-years away. Gliese 349 : Also known as BD+58°419, located approximately 23.88 light-years away. Gliese 12 : Also known as CD-44°163, situated around 24.33 light-years away. Gliese 22 : Also known as BD+16°1608, it's approximately 24.55 light-years away. Gliese 700 : Also known as CD-53°163, located about 24.70 light-years away. Gliese 735 : Also known as BD+36°1987, situated around 24.71 light-years away. Gliese 35 : Also known as BD+05°1780, it's approximately 24.74 light-years away. Gliese 799 : Also known as BD+28°3133, located about 24.84 light-years away. Gliese 350 : Also known as BD+27°2591, situated around 24.91 light-years away. Gliese 389 : Also known as BD+22°1950, it's approximately 25.00 light-years away. Gliese 424 : Also known as CD-38°161, located about 25.09 light-years away. Gliese 427 : Also known as BD+36°2107, situated around 25.16 light-years away. Gliese 12 : Also known as CD-44°161, part of the Gliese 12 binary system. Gliese 22: Also known as BD+16°1608, part of the Gliese 22 binary system. Gliese 700 : Also known as CD-53°163, part of the Gliese 700 binary system. Gliese 735 : Also known as BD+36°1987, part of the Gliese 735 binary system. Gliese 35 : Also known as BD+05°1780, part of the Gliese 35 binary system. Gliese 799 : Also known as BD+28°3133, part of the Gliese 799 binary system. Gliese 350 : Also known as BD+27°2591, part of the Gliese 350 binary system. Gliese 389 : Also known as BD+22°1950, part of the Gliese 389 binary system. Gliese 424 : Also known as CD-38°161, part of the Gliese 424 binary system. Gliese 427 : Also known as BD+36°2107, part of the Gliese 427 binary system. Gliese 86 : Also known as BD+48°2045, it's approximately 25.30 light-years away. Gliese 545 : Also known as BD+04°2466, located about 25.38 light-years away. Other Articles..... STAR VFTS102 KEPLER-452b KEPLER-186f Proxima Centauri b TRAPPIST-1
- Blackhole Information Paradox | SPACELIA
The Black Hole Information Paradox is a long-standing problem in theoretical physics and astrophysics, concerning the conservation of information in the presence of black holes, which are regions of spacetime where gravity is so strong that not even light can escape from them. The paradox arises from the clash between the principles of quantum mechanics and general relativity. Blackhole Information Paradox The Black Hole Information Paradox is a long-standing problem in theoretical physics and astrophysics, concerning the conservation of information in the presence of black holes, which are regions of spacetime where gravity is so strong that not even light can escape from them. The paradox arises from the clash between the principles of quantum mechanics and general relativity. In classical physics, black holes are described by solutions to Einstein's field equations of general relativity, which predict that anything that falls into a black hole will be irretrievably lost behind its event horizon, a boundary beyond which nothing can escape. This implies that any information about the matter that formed the black hole, such as its mass, charge, and angular momentum, is lost to the outside universe. However, according to the principles of quantum mechanics, information cannot be destroyed. Instead, it should always be possible, in principle, to trace the evolution of a quantum system backwards in time and reconstruct the initial state from the final state. This principle is known as unitarity. The paradox arises because the classical description of black holes seems to violate the principles of quantum mechanics. If information is lost behind the event horizon, then the evolution of a black hole's state seems to violate unitarity, leading to a breakdown of quantum mechanics. Various proposed solutions to the Black Hole Information Paradox have been put forward over the years, but none have been universally accepted. Some of these proposals include: Hawking Radiation and Information Loss: Stephen Hawking proposed that black holes emit radiation (now known as Hawking radiation) due to quantum effects near the event horizon. This radiation carries away energy from the black hole, eventually causing it to evaporate completely. Initially, it was believed that this process led to the loss of information, but later work suggested that information might be encoded in the radiation, leading to the idea of "black hole complementarity" or the "firewall paradox." Firewall Paradox: Proposed as a resolution to the information paradox, the firewall paradox suggests that an observer falling into a black hole would encounter a firewall of high-energy particles at the event horizon, contradicting the smooth spacetime predicted by general relativity. This proposal has sparked significant debate within the physics community. Holographic Principle and AdS/CFT Correspondence: The holographic principle suggests that all the information contained within a region of space can be encoded on its boundary. The AdS/CFT correspondence, a conjectured equivalence between certain gravitational theories and quantum field theories, has been used to study black hole physics in this context, offering potential insights into the resolution of the information paradox. Quantum Gravity and String Theory: Some researchers believe that a theory of quantum gravity, which successfully unifies quantum mechanics and general relativity, could resolve the information paradox. String theory is one candidate for such a theory, but it remains highly speculative and has not yet been definitively confirmed. Information Preservation: Other proposals suggest that information may somehow be preserved in a subtle way within the black hole or its radiation, allowing for the eventual recovery of the initial state.Despite decades of research, the Black Hole Information Paradox remains unsolved, and it continues to be a topic of active investigation and debate within the physics community. Resolving this paradox is crucial for developing a complete understanding of the fundamental laws governing the universe. Chat Section If you have any question ask me here.... Other Articles...... Theories Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1 Today Onward Theory Parallel World Travel We are our GOD Inflationary Cosmology
- Hubble's Discoveries | SPACELIA
Hubble's Discoveries The Space Discoveries by Hubble Space Telescope, Galaxies, Stars, Planets and many more. Presenter please note: Much of the discussion in these slides, and most of the public’s attention, is focused on Hubble’s enormous repertoire of images. Here is a montage of some of Hubble’s best images that symbolize the breadth and depth of Hubble observations and the research being done. In each image that follows, a timeline (shown here) will be shown so that viewers have an appreciation for how far away the object is and how long it takes for the light to travel to Hubble from that object.
- Spacelia Scopic World | SPACELIA
Exploring the universe with the eyes of Spacelia, Here are some images of galaxies and the deep field also some galaxy clusters, binary system and many more, Spacelia Scopic World Our telescopic discoveries and unique gallery of space images and different space objects hope so you enjoy it.
- Worm Hole | SPACELIA
Worm Holes are one of the mysterious phenomenon in this Universe, It has the ability to bend the space time and let you to travel through Space and Time in a shorter period, Help of this phenomenon we could travel through galaxies that seems impossible right now. Worm Hole Let's begin the curvature of worm hole What is a worm hole?, how are worm holes formed?, and what is the function of a worm hole?, I will tell you all this in this article today, so first let's talk about what a worm hole is, how these worm holes are made and How it works, so worm hole connects two different places in space, just like a bridge, so that we can cover long distances in a short time, as you see in the image below, worm hole space. It bends like this and we can show it as a circle and a circle is a sphere in 3D, so the worm hole is also like a sphere. By traveling in this, you can bridge the distance between two places in a very short time, but a big question is that how are worm holes formed? We have heard about black holes that they are formed after supernova, but worm holes are We do not know how they are formed, worm holes are not a natural phenomenon, we have to create them artificially. But till date we have not succeeded in creating such a big worm hole, we have definitely done this test on a very small level but it is not enough for a human being, so only some advanced civilization can do this in the future. You are controlling us and they can create a worm hole just like the interstellar movie.
- Existence of Multiverse | SPACELIA
what is multiverse? , Does it exist in real?, and if yes then how, I will also show its proof and an experiment. In this article, you will know the secret of the multiverse and all the facts related to it and will also know whether it exists or not. Existence of Multiverse Overview what is multiverse? , Does it exist in real?, and if yes then how, I will also show its proof and an experiment. In this article, you will know the secret of the multiverse and all the facts related to it and will also know whether it exists or not. 1.1 Imaginary view of multiverse Perspective.... We already know about the multiverse that this is our universe and there must be another such universe outside this universe and we have named it multiverse, but can't it be that when the Big Bang happened, different universes were created? It must have happened, it must be strange to hear but I will explain it to you very well. You must have read in Science in class 8-9 that when milk is heated, the particles below its surface get heated and come up and the cold particles from above come down and in the same way the milk gets heated, but this one feels hotter. After this, its hot molecules come up through an air bubble, which takes time and the milk gets heated quickly, so what is the relation of this to our theory?, like the milk particles get heated more and form a bubble type structure. Similarly, when the Big Bang happened, the particles were spread among the molecules, then that energy would also have taken a bubble-like form and we live in one of those bubble type structures. 1.2 Bubble type structure in milk Where is proof?..... 1.3 Experience of deja vu. By now you must have understood all the society but still there must be a question somewhere in your mind that proving the multiverse only on the medium of milk does not seem confidential. Yes, so now I will tell you some experiments and proofs, imagine that you are looking at the Taj Mahal and suddenly this thought came to you that yes, I have already seen the Taj Mahal and that too while standing at the same place, or Sometimes it may have happened that you are meeting someone for the first time and you feel that you have met them before, 94% of the people in the whole world have felt such things, this is called déjà vu effect, it means first. Some work done The thesis behind this is that when your timeline collides with your avatar, which is in another universe of the multiverse, then you feel that your other avatar has done this thing earlier and that thing is saved in your memory. It happens and when you see that thing again, you feel that you have done it before. We can compare this thing with the multiverse, and somewhere this thing may have a connection with the multiverse.
- Osiris-REx Mission | SPACELIA
Osiris - REx Mission Remember that scene in "Armageddon" where Bruce Willis blows up a giant asteroid on a collision course with Earth? Thankfully, Bennu, a real near-Earth asteroid, isn't hurtling towards us quite that aggressively. But it is still a celestial wanderer with a thrilling story, and the audacious mission of the OSIRIS-REx spacecraft to unlock its secrets. Bennu: A Time Capsule From the Solar System's Dawn Imagine a colossal rock, bigger than the Empire State Building, older than the dinosaurs, and potentially holding the key to the origins of life on Earth. That's Bennu, a carbonaceous chondrite asteroid formed in the fiery crucible of the early solar system, some 4.5 billion years ago. Unlike its metallic or rocky siblings, Bennu is a carbonaceous treasure trove, its dark, diamond-like surface coated in organic molecules and minerals untouched for eons. Studying these pristine materials is like opening a time capsule, offering scientists a glimpse into the conditions that gave birth to our solar system and the potential for life beyond Earth. OSIRIS-REx: A Touch in the Void In 2016, NASA embarked on a mission as daring as it was groundbreaking: to rendezvous with Bennu, study its surface, and collect a precious sample. The OSIRIS-REx spacecraft, a technological marvel resembling a robotic octopus, embarked on a years-long journey, navigating the gravitational dance of the solar system and finally arriving at Bennu in 2018. For two years, OSIRIS-REx orbited Bennu like a celestial dance partner, mapping its surface in exquisite detail, revealing a world of craters, boulders, and even a mysterious dark plume erupting from its surface. Then, in October 2020, came the moment of truth: the Touch and Go Sample Acquisition Mechanism (TAGSAM) extended from the spacecraft, gently kissed Bennu's surface, and collected a handful of precious regolith (loose, rocky material) – Bennu's ancient secrets scooped into a cosmic treasure chest. Mission Accomplished: Bennu's Treasures Return to Earth After successfully completing its mission, OSIRIS-REx began its long journey back to Earth, carrying its priceless cargo. On September 24, 2023, the spacecraft hurtled through the atmosphere, releasing the sample capsule over the Utah desert. This precious payload, containing millions of Bennu particles, landed safely, marking a historic moment in space exploration. Bennu's Secrets Unlocked: A New Chapter in Science Scientists around the world are now eagerly analyzing the Bennu sample, hoping to answer some of humanity's most profound questions. What were the building blocks of the solar system? How did asteroids contribute to the formation of planets? Could Bennu's organic molecules hold the key to the origins of life? The answers lie within the grains of Bennu's regolith, waiting to be deciphered. This mission is not just about understanding the past; it's about preparing for the future. Studying Bennu's composition and trajectory could help us develop strategies to deflect asteroids in case they ever pose a threat to Earth. Bennu: More Than Just a Rock, a Story of Our Universe The story of Bennu is a testament to human ingenuity and our insatiable curiosity about the universe. It's a reminder that even in the vast emptiness of space, there are treasures to be found, stories to be told, and mysteries waiting to be unlocked. With every grain of Bennu analyzed, we expand our understanding of the cosmos and our place within it. Who knows, maybe one day, Bennu won't just be a celestial bullet dodged, but a key to unlocking the secrets of life itself. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Chandra X-Ray Observatory
- Space Facts | SPACELIA
Facts about Space Facts about space, new planets, antique thing in space, new updates The great attractor Location: The Great Attractor is located in the direction of the Centaurus and Hydra constellations, roughly 150 million light-years away from Earth. Its position behind the dust clouds of our Milky Way galaxy makes it challenging to observe directly. Gravitational Pull: The Great Attractor possesses an immense gravitational force that influences the motion of nearby galaxies. It acts as a massive attractor, causing galaxies to move towards it at high speeds. This gravitational pull shapes the large-scale structure of the universe. Uncertain Nature: The exact nature and composition of the Great Attractor remain a mystery. Scientists propose various theories, including the possibility of it being a concentration of dark matter or a supercluster of galaxies. Further research and observations are necessary to unravel the true nature of this cosmic phenomenon. Age of water A fascinating fact about the age of water on Earth is that some of the water molecules we have today are estimated to be as old as the solar system itself. This conclusion is based on the analysis of isotopes, specifically the ratios of deuterium (a heavy isotope of hydrogen) to regular hydrogen in water samples. By studying these isotopic ratios, scientists have determined that a portion of Earth's water has likely been part of the planet's hydrological cycle since its formation approximately 4.5 billion years ago. This means that the water we use and encounter every day has been cycling through the Earth's oceans, atmosphere, and land for billions of years, making it a remarkable and ancient resource. Gliese 436 B Classification: Gliese 436 b is classified as a "hot Neptune" due to its size resembling Neptune, but with extreme temperatures. Orbit and Distance: It orbits very close to its parent star, completing a revolution in just 2.64 Earth days. Gliese 436 b is located approximately 33 light-years away from Earth. Atmosphere and Composition: The planet has a scorching atmosphere due to its close proximity to the star. It is primarily composed of hydrogen and helium, but also contains exotic materials such as "hot ice" or superheated steam. Density and Structure: Gliese 436 b has a relatively low density compared to other exoplanets of similar mass and size. The planet may have a dense core surrounded by a massive envelope of hydrogen and helium. Tidal Forces: Strong tidal forces act on the planet due to its proximity to the star. These tidal forces elongate the planet, leading to additional heating of its atmosphere. The oldest planet Age: PSR B1620-26 system is estimated to be around 12.7 billion years old. Star: The system's central star is a binary system consisting of a pulsar (PSR B1620-26) and a white dwarf. Planets: PSR B1620-26 b (Methuselah): Discovered in 2003. Gas giant planet. Similar in size to Jupiter. Mass is approximately 2.5 times that of Jupiter. Orbits both the pulsar and the white dwarf. Average distance from the star: about 23 astronomical units (AU). Highly eccentric orbit. Orbital period: roughly 100 Earth years. PSR B1620-26 c (Genesis): Discovered in 2006. Gas giant planet. Orbits at a distance of approximately 83 AU from the central stars. GJ 1214B Discovery: GJ 1214b was discovered in 2009 by the MEarth Project, which aims to detect Earth-sized exoplanets orbiting nearby M-dwarf stars. Classification: GJ 1214b is classified as a super-Earth exoplanet. Size and Mass: GJ 1214b is larger than Earth but smaller than gas giants like Jupiter. Its size is approximately 2.7 times the Earth's radius. The mass of GJ 1214b is estimated to be around 6.5 times the mass of Earth. Composition: GJ 1214b is believed to have a substantial atmosphere. The planet's composition consists of a combination of rock and water. HD 140283 Age: HD 140283 is one of the oldest known stars in the universe. Its estimated age is about 14.46 billion years, making it older than the estimated age of the universe itself. Distance: HD 140283 is located approximately 190 light-years away from Earth. It is situated in the constellation Libra. Spectral Class and Subgiant Status: HD 140283 is classified as a subgiant star. It belongs to the spectral class F9, indicating its temperature and other Speciality: This planet is the oldest planet of our universe, in fact this planet is older than universe Deja Vu effect Deja vu is a psychological phenomenon characterized by a strong sense of familiarity or the feeling that one has experienced a current situation or event before, despite knowing that it is impossible. While the exact cause of deja vu is not fully understood, several theories have been proposed to explain its occurrence. Here are some of the leading theories: Prevalence: Deja vu is a common phenomenon experienced by a significant portion of the population. Studies suggest that approximately 60-80% of people report having had at least one deja vu experience in their lifetime. Milkey way galaxy The Milky Way Galaxy was born about 12.7 years ago, and is still expanding rapidly today. According to scientists, 6 to 7 new stars are born every year in our milky way galaxy and every year a light star dies and turns into a planetary nebula. Our solar system is 27,000 light years away from the center of the Milky Way galaxy. Our milky way galaxy travels through space at a speed of about 583 KM/S, and it is expanding at a speed of 1770 KM/H. At the center of our Milky Way galaxy is the SAGITTARIUS A* black hole with a mass 4.3 million times that of our Sun. Speed of Light The speed of light in a vacuum is approximately 299,792,458 meters per second (or about 186,282 miles per second). This speed is denoted by the symbol "c" in physics equations. Light travels at a constant speed in a vacuum, regardless of the source or the observer's motion. This is one of the fundamental principles of physics. The speed of light is incredibly fast. For example, light from the Sun takes about 8 minutes and 20 seconds to reach Earth, even though the distance is about 93 million miles (150 million kilometers). The speed of light is the fastest known speed in the universe. According to our current understanding of physics, no object with mass can reach or exceed the speed of light. Travel at speed of light If we travel at the speed of light, what will the universe look like, then understand that when we drive in the rain, the rain water hits the windshield of the car, as the speed of the car increases, the water hits more diagonally and today The concept applies to spaceships and interstellar space in the universe, where the spaceship traveling at the speed of the universe appears in 2D form in a frame against the light of the surrounding stars. MIT University has done one such fun experiment in which it has shown what it feels like to go back and forth at the speed of light. (Download link is below) Download A Slower Speed of Light game: https://gamelab.mit.edu/games/a-slower-speed-of-light/ Speed of Light 2 The fastest moving thing in our universe is light, which moves at a speed of 300,000 kilometers per second. You will be surprised to know that light takes 1.3 seconds to reach the moon from earth and it takes 182 seconds to reach Mars and it takes 32 minutes to reach Jupiter and it takes 500 years to reach our Milky Way Galaxy. Light takes 2500000 years to go and reach the nearest Galaxy Andromeda and you will be surprised to hear that despite the speed of light, it can never cross the universe because our universe is spreading faster than light. Time Dilation What is time dilation? Let us understand in a very simplified way, you must have seen the Interstellar movie, in which time is extremely slow on the planet named Millers, where 1 hour spent is equal to 7 years spent on Earth. This is because the planet was very close to the black hole, according to Einstein's theory of relativity, black holes have more time warp, so that time slows down. So understand it in this way that it normally takes us time to go from point A to B, but if we pass near a black hole, then the curvature increases, so it takes more time for us to go from A to B. Epsilon Eridani Star System 7th Aug 2000 Scientists have discovered a new star system named Epsilon Eridani in the Eridanus constellation about 10.5 light years away from Earth. This star system is exactly like our solar system. In this star system we have discovered Epsilon Eridani-b and a low mass planet Epsilon Eridani-c like Jupiter. Apart from this, the asteroid belt is also present in this star system just like our solar system. About 800 million years old, this star system is similar to the time when life began on our Earth. Scientists also consider this star system as the home of aliens. Strange Planets The Pink Planet : GJ504B is a planet that looks completely pink in color and the reason for the pink appearance of this house is its intense heat which makes it look pink, and this planet is 4 times bigger than Jupiter. Super Saturn : J1407B is also called Super Saturn because this planet has the largest planetary ring system ever found and this ring system is 640 times bigger than Saturn. The golden planet : 16 psyche is an asteroid, but it is also called a minor planet. There is a lot of gold in this asteroid. Let us tell you that the price of this minor planet is about 700 quintillion dollars. Space Facts-1 Right now we know only 5% of the universe out of 100 hubs and this is what we call the observable universe and according to scientists there are about 2 trillion galaxies in our observable universe. 1 billion 400 million years ago, a day on our earth used to be 18 hours 41 minutes. There are thousands of millions of black holes present in our Milky Way Galaxy, which keep wandering in space like this. HD140283 is considered to be the first star of this universe and the age of this star is 14.3 billion years which is more than the age of our universe. The black hole that is closest to our earth is named HR6819 and this black hole is 1000 light years away from us. PSR J1719 1438B In the year 2009, MATHEW BAILES, who is an astrophysicist, saw a house from his telescope which was 3000 times bigger than the sun, yet it was revolving around its sun, then after research, it was found that in a supernova explosion, that star was transformed into a nevtron star, whose mass is much more than its house, so it is holding its star despite being small, and that planet has also become a super giant, but due to the heat of its star. Since then the carbon inside it has now become diamond and that planet is a complete diamond planet. Center of Mass in Solar System We all have been reading since childhood that all the planets in our solar system revolve around the Sun, so according to that, the middle point for all the planets should be the middle point of the Sun, but it is not so in reality. Gravitational force pulls the planet towards itself, similarly the planets also pull the Sun, but here the Sun is an ancient and very big star, so its force is more than all the other planets, hence all the planets are seen revolving around it, but all the planets And the center of mass between the Sun is different, like Jupiter is the largest planet in our solar system, so as soon as its gravitational force and the force of the Sun meet, both of them revolve around their center of mass which is away from the center of the Sun. Comes a little further. Time Traveler Party The great scientist Stephen Hawking was already experimenting on time travel. In 2009, Stephen Hawking hosted a reception for time travelers at the University of Cambridge. He sent out invitations but did not publicize the event until afterward. The idea was to see if any time travelers would attend, as they would be aware of the event's details through time-traveling knowledge. But no one attended that party which proved that humans cannot time travel. And we also know that if we have to go back in time then it is never possible in the universe. What is Time? Time!, what is time? You will say that a clock or a calendar will be something like this, no, time is not a thing, all these are things to measure time. Time is a dimension, I understand in simple language, time has been moving ever since our universe was created, so is time moving us? No, things keep changing with time, meaning motion also keeps on changing with time, see like ever since the universe was created, it is expanding and all this is happening with time. Before the Big Bang, there was no motion in the singularity, so there was no time then, it can be said as if only time can be the cause of change. Times are changing. Why we should not make contact with aliens right now Great scientist Stephen Hawking said that we should not make contact with aliens right now. Why did he give such advice? Because we humans are still like small children in the world of technology, you will say that science has progressed so much, so many discoveries have been made, we have even gone to space, once or twice in space. We do not become rich by leaving, we have not even searched for living on another planet or have gone to live on any other planet. This progress seems big to us but it is nothing. If we contact any alien civilization, they will reach our Earth and may even harm us, that is why even today we do not respond to any signal. Quantum Elevator What is a quantum elevator? Suppose you are in a building and each floor of this building is a different dimension, you live on the 4th floor, that is, in the 4th dimension, and you have to go from the 4th floor to the 10th floor and there is an elevator here which will take you there. But when you are going from 4th floor to 10th floor then you will not be able to see the floors coming in between and you will not even know what is on this floor. This is how the quantum elevator works. And this can be very different in different dimensions, it takes us in a fixed dimension. Bennu Asteroid Composition: Bennu is a carbonaceous asteroid, rich in carbon-based compounds. This composition makes it valuable for scientists, as it could provide insights into the origin of life and the early solar system. Sample Collection: NASA's OSIRIS-REx mission successfully collected a sample from Bennu's surface in October 2020. This mission aims to return the collected samples to Earth, allowing scientists to study the asteroid's material in detail. Impact Risk: Bennu is classified as a potentially hazardous asteroid due to its orbit's proximity to Earth's orbit. Scientists continue to monitor its trajectory to assess any potential impact risks in the future. Images Voyager's Golden Record The Voyager Golden Record, a time capsule of humanity's cultural and scientific achievements, was launched aboard the Voyager 1 and Voyager 2 spacecraft by NASA in 1977. This phonograph record contains a diverse array of sounds and images representing Earth and its inhabitants, including greetings in 55 languages, music from various cultures, and images depicting life on our planet. The record was designed to serve as a message to any extraterrestrial civilizations that might encounter the Voyager spacecraft. A testament to human curiosity and creativity, the Voyager Golden Record remains a symbolic representation of our species' desire to reach out and connect with the unknown, even across the vastness of space. Gallery WARP Drive Warp drive is a theoretical propulsion system that features prominently in science fiction, notably in franchises like "Star Trek." The concept involves manipulating space-time to enable faster-than-light travel, allowing spacecraft to travel vast interstellar distances in a relatively short time. In essence, warp drive contracts space in front of the spacecraft while expanding it behind, creating a warp bubble that moves the vessel. While widely popularized, especially by theoretical physicist Miguel Alcubierre's theoretical framework in 1994, practical implementation remains a distant dream due to the enormous energy requirements and unresolved challenges in bending space-time as proposed. Scientists continue to explore the theoretical underpinnings of warp drive, but as of now, it remains firmly in the realm of speculative science fiction. Psyche Asteroid Psyche is a massive asteroid located in the asteroid belt between Mars and Jupiter. It's of particular interest to scientists because it's composed mostly of metallic iron and nickel, resembling Earth's core. This unique composition has led researchers to hypothesize that Psyche might be the exposed core of an early planetesimal, offering a rare opportunity to study the interior of a planet-like body. NASA's Psyche spacecraft, slated for launch in 2022, aims to explore this intriguing asteroid, providing valuable insights into the processes that shaped the early solar system and potentially uncovering secrets about planetary core formation. Earendel Star The James Webb Space Telescope has discovered the most distant star in space, which is believed to be the most distant star ever explored, and it is also believed that this star was formed only in the first 100 million years after the Big Bang. had gone Arandale was discovered by the Hubble Space Telescope in 2002 and along with its expansion, it has moved 2800 kilometers away from us. Recently, NASA has once again discovered this star with the help of James Webb Telescope and it has been revealed that it is 2 times bigger than our sun, its brightness is 1 million times more than our sun. NGC 6166 Black Hole Psyche is a massive asteroid located in the asteroid belt between Mars and Jupiter. It's of particular interest to scientists because it's composed mostly of metallic iron and nickel, resembling Earth's core. This unique composition has led researchers to hypothesize that Psyche might be the exposed core of an early planetesimal, offering a rare opportunity to study the interior of a planet-like body. NASA's Psyche spacecraft, slated for launch in 2022, aims to explore this intriguing asteroid, providing valuable insights into the processes that shaped the early solar system and potentially uncovering secrets about planetary core formation.
- Black Hole | SPACELIA
A black hole is an extremely dense region in space where gravity is so strong that nothing, not even light, can escape its grasp. It forms when a massive star collapses, creating a point called a singularity surrounded by an event horizon, beyond which nothing can return. Black holes come in various sizes, including stellar-mass and supermassive black holes. Black Hole A black hole is an extremely dense region in space where gravity is so strong that nothing, not even light, can escape its grasp. It forms when a massive star collapses, creating a point called a singularity surrounded by an event horizon, beyond which nothing can return. Black holes come in various sizes, including stellar-mass and supermassive black holes. What is Black Hole and how Black Hole forms? Today we will talk about black holes, first let us know how black holes are formed, to keep a star in balance, its gravitational force pushes it inwards and the nuclear fusion taking place in its center pushes it outwards. And with the help of these two pushing forces, the star remains under control. But when the helium gas inside the star starts getting exhausted then the nuclear energy of the star gradually gets exhausted, then gradually the star becomes a red giant, at this time the fusion happening on the star which prevents the gravity from pushing it inside. The force is no longer there and due to gravity the star seems to shrink in on itself and a time comes when the center of the star cannot handle so much gas and a big explosion occurs which we call a supernova, and at the end of the supernova A black hole is formed in A black hole has so much mass that even light gets trapped in front of its gravity and it also absorbs light into itself. Black hole is the center of an infinite mass around which there is a ring like event horizon. Original image of Black hole in i.c.1, explanation of black hole formation i.c.2 i.c.1 Black Hole event horizon. i.c.1 Black Hole formation. Time travel using Black Hole? I hope you have understood what a black hole is and how it is formed. There are many more questions about black holes for which we do not have answers, what is inside a black hole?, where do things go inside a black hole?, does it have an alternative white hole?, do all these things come out of the white hole? Does it come?, Can a black hole take us to our past or make us travel through time? We have not been able to find the answer to this mystery. Suppose we have detected a black hole, yet the nearest black hole is also 1560 light years away from us! If we travel at the speed of light, it will be approximately 1560 years and we can travel in space at the speed of light. Couldn't even find any solution. So as of today it is not possible to reach a black hole. But what's the point in believing, so let's take time and even if we reach the black hole, there will be many more difficulties in front of us, which I will tell you later. You all must have seen the movie Interstellar, in which a planet is shown which is very close to the black hole and we all know that the black hole has infinite mass and its space-time curvature is also very high, meaning it is very close to the black hole. Even spending a little time is a lot of years according to Earth, it is shown in this movie that 1 hour spent on Miller's Planet is equal to 7 years on Earth. And we call this effect time dilation. But we have to go inside it, not around it, and if the black hole also pulls the light inside itself, then we will have to travel at a speed faster than the light, there is another twist in this, we will first go to the event horizon of the black hole where all the things It starts rotating around the black hole, if we can survive there then we can reach inside the black hole, but we do not even know what is inside the black hole. So if we cross all these things then we can go inside the black hole. Scientists speculate that a black hole may act like a worm hole, just like the one shown in Interstellar. If you also want such an article like Worm Hole, then subscribe to the website so that you get the notification of that article. Now you can understand how complex the black hole is and we have not been able to solve the entire mystery of the black hole yet. i.c.3 Black hole event horizon. i.c.4 Black hole curvature comparison i.c.5 Black hole time travel. Black Hole images Other Articles.... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop Parallel World Travel Age of our Universe Zombie Planets
- Aditya L-1 - Exploration of SUN | SPACELIA
Aditya-L1 is India's first dedicated space-based solar mission, launched by ISRO on September 2, 2023. It is designed to study the Sun by observing it from the Sun-Earth L1 point, which is about 1.5 million km from Earth. This location provides a nearly uninterrupted view of the Sun, unlike satellites in Low Earth Orbit. Aditya L-1 - Exploration of SUN Unraveling the Cosmic Tapestry: Chandra X-ray Observatory's Saga In the grand cosmic theater, where the universe dons its most enigmatic costumes, the Chandra X-ray Observatory stands as humanity's eye into the unseen realms. Launched by NASA in 1999, Chandra has been an unrivaled pioneer, deciphering the universe's secrets encoded in X-ray frequencies. In this comprehensive exploration, we embark on a captivating journey, unveiling the multifaceted story of Chandra – its functions, motives, structure, historic milestones, and the mesmerizing discoveries that have reshaped our understanding of the cosmos. X-ray Vision: Chandra's Functions and Motive Unveiling Cosmic Hotspots Chandra's primary function is to observe high-energy X-rays emanating from celestial objects. By capturing these elusive rays, it unveils the hottest, most dynamic regions of the universe, revealing details invisible to other telescopes. Decoding Stellar Life Cycles From supernova remnants to pulsars and black holes, Chandra plays a crucial role in decoding the life cycles of stellar objects. It's a cosmic detective, providing insights into the birth, evolution, and demise of stars. Probing Galactic Nuclei Chandra's gaze extends to the hearts of galaxies, where supermassive black holes reside. By studying the radiation emitted from these active galactic nuclei, scientists gain essential clues about the cosmic processes at play. Charting the Cosmic Web Chandra contributes to mapping the large-scale structure of the universe, uncovering the vast cosmic web formed by the distribution of hot gas between galaxies. Engineering Marvel: The Structure of Chandra X-ray Observatory Mirrors of Precision Chandra's mirrors are coated with a thin layer of iridium, a choice that enhances reflectivity in the X-ray range. Nested mirrors, rather than traditional lenses, focus the incoming X-rays onto detectors with exceptional precision. Space-Resilient Design Crafted to endure the rigors of space, Chandra orbits Earth in an elliptical trajectory, minimizing interference from the planet's radiation belts. This resilient design ensures the telescope's longevity and sustained scientific contributions. Chronicles of Chandra: A Historic Journey Launch into the Unknown Chandra embarked on its cosmic odyssey aboard the Space Shuttle Columbia on July 23, 1999. Named after the astrophysicist Subrahmanyan Chandrasekhar, the telescope began its mission to unravel the mysteries of the X-ray universe. Milestones and Legacy Throughout its journey, Chandra has left an indelible mark on astrophysics. From confirming the existence of dark energy to identifying numerous neutron stars, its discoveries have rewritten the cosmic narrative. Conclusion: Chandra's Ongoing Odyssey As we reflect on the cosmic voyage of the Chandra X-ray Observatory, we recognize its indispensable role in reshaping our cosmic comprehension. The observatory continues to unravel the X-ray mysteries, painting a vivid portrait of the universe's hidden intricacies. "X-ray Pioneers" pays homage to the brilliance of Chandra – a beacon illuminating the celestial darkness, guiding us into the depths of the cosmos where new revelations await discovery. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Osiris-REx Mission Chandra X-Ray Observatory Chandrayan-3
- Dark Energy | SPACELIA
In the late 1990s, astronomers found evidence that the expansion of the universe was not slowing down due to gravity as expected. Instead, the expansion speed was increasing. Something had to be powering this accelerating universe and, in part due to its unknown nature, this “something” was called dark energy. Dark Energy In the late 1990s, astronomers found evidence that the expansion of the universe was not slowing down due to gravity as expected. Instead, the expansion speed was increasing. Something had to be powering this accelerating universe and, in part due to its unknown nature, this “something” was called dark energy. What Is Dark Energy? In the late 1990s, astronomers found evidence that the expansion of the universe was not slowing down due to gravity as expected. Instead, the expansion speed was increasing. Something had to be powering this accelerating universe and, in part due to its unknown nature, this “something” was called dark energy. Hubble plays an important role in verifying, characterizing and constraining dark energy. Both Hubble and ground-based observations measures a special type of stellar explosion, a white dwarf supernova, to measure accurate distances to galaxies. A galaxy located a billion light-years away provides a data point for the universe as it was a billion years ago. Meanwhile, as the universe expands, the light traveling to Earth from distant galaxies (and their supernovas) is stretched out to longer wavelengths — a phenomenon called cosmological redshift. The cosmological redshifts of galaxies at different distances provides a history of the expansion of the universe over time. However, only Hubble had the resolution to extend these observations to very distant galaxies. The discovery of supernova 1997ff, located about 10 billion light-years away, provided evidence for dark energy. About halfway into the universe’s history — several billion years ago — dark energy became dominant and the expansion accelerated. While ground-based studies had measured this accelerating period, Hubble’s observation of 1997ff stretched back to the decelerating part of the expansion. This shift between two different eras of the universe — a change from a decelerating universe to an accelerating universe — showed that dark energy exists. Hubble continued to explore the nature of dark energy with observations such as the Great Observatories Origins Deep Survey (GOODS), structured to help uncover distant supernovas. The 42 supernovas found by Hubble not only solidified the conclusions about dark energy, but also began to constrain some of its possible explanations. Later Hubble results identified how early in the universe dark energy began to influence the expansion as well as constrained the current expansion rate. The view that emerged was that dark energy was consistent with the slow, steady force of Einstein’s cosmological constant, a concept that the physicist had initially introduced into his equations to prevent his theoretical universe from collapsing, then later retracted when the expansion of the universe was discovered. But instead of holding the universe in a steady state, dark energy is pushing outward to expand the universe faster and faster. The discovery of dark energy was recognized by the Nobel Prize in Physics in 2011. Astronomers now know that there is much more to the universe than meets the eye. The luminous and non-luminous normal matter makes up about 4 percent of the total mass and energy density of the universe. Dark matter, which emits no light and cannot be directly observed, comprises another 24 percent of the total, while dark energy dominates with about 72 percent. Most of the universe is unknown and only indirectly detected. We can see its effects on galaxies and the expansion of the universe, but we have yet to identify the underlying source. That may seem unsettling, but to a scientist, it is exciting. There are more great mysteries to explore and solve! The universe is expanding, and that expansion stretches light traveling through space in a phenomenon known as cosmological redshift. The greater the redshift, the greater the distance the light has traveled. Within the Hubble Deep Field-North region, astronomers pinpointed a blaze of light from one of the farthest supernovas ever seen. In a close-up view of that region (left) a white arrow points to a faint elliptical, the home of the exploding SN 1997ff. The supernova itself (right) is distinguished by the white dot in the center. This diagram reveals changes in the rate of expansion since the universe's birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion. The curve changes noticeably about 7.5 billion years ago, when objects in the universe began flying apart as a faster rate. Astronomers theorize that the faster expansion rate is due to a mysterious, dark force that is pulling galaxies apart. This image is a portion of the GOODS-North field. The field features approximately 15,000 galaxies, about 12,000 of which are forming stars. Hubble’s ultraviolet vision opened a new window on the evolving universe, tracking the birth of stars over the last 11 billion years back to the cosmos’ busiest star-forming period about 3 billion years after the big bang. Spiral galaxy NGC 3021 (background) was one of several hosts of Type Ia supernovae observed by astronomers to refine the measure of the universe's expansion rate, called the Hubble constant. Hubble made precise measurements of Cepheid variable stars in the galaxy, highlighted by green circles in the inset boxes. Other Articles...... Zombie Planets Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1
- Articles | SPACELIA
Latest Space Science & Space Exploration Articles, Related to Aerospace, Propulsion or Astrophysics Research Papers Articles STAR VFTS102 We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s−1 and probably as large as 600 km s−1; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s−1 from the mean for 30 Doradus, suggesting that it is a runaway. View More Dark Energy In the late 1990s, astronomers found evidence that the expansion of the universe was not slowing down due to gravity as expected. Instead, the expansion speed was increasing. Something had to be powering this accelerating universe and, in part due to its unknown nature, this “something” was called dark energy. View More Zombie Planet Zombie planets, also known as "pulsar planets" or "planets around pulsars," are a fascinating and relatively rare astronomical phenomenon. View More The Dream Mission People must have had many dreams and those dreams would be very unique, but my dream is very unique. Today I will share with you this dream journey full of very interesting and adventures. In this dream of mine, I have done the complete mission of Mars and there are many twists in that too, which I will tell you further in this article. The article is The Dream Mission View More Creation of Mind Loop What we doing, what we experiencing, what we thinking is a creation of mind, and it's just a thoughts View More Answer of the Arecibo Message Whether real, mysterious, or fictional, these messages symbolize humanity’s deep yearning to connect with the unknown. The Arecibo Message demonstrates our technological advancements and hope for contact. The Chilbolton Message, regardless of its authenticity, underscores our fascination with the possibility of extraterrestrial communication. Meanwhile, Contact invites us to imagine the emotional and philosophical weight of finding we are not alone. View More Aditya - L1 View More Aditya - L1 View More Aditya - L1 View More Aditya - L1 View More Aditya - L1 View More
- Proxima Centauri b | SPACELIA
Proxima Centauri b is an exoplanet that orbits the red dwarf star Proxima Centauri, which is the closest known star to our Sun. Here's a detailed explanation of Proxima Centauri b, including information about its characteristics, atmosphere, and the search for extraterrestrial life or aliens Proxima Centauri b Proxima Centauri b is an exoplanet that orbits the red dwarf star Proxima Centauri, which is the closest known star to our Sun. Here's a detailed explanation of Proxima Centauri b, including information about its characteristics, atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of Proxima Centauri b: Size: Proxima Centauri b is classified as an exoplanet with a mass roughly similar to Earth's, making it about 1.3 times the mass of our planet. This places it in the category of terrestrial exoplanets, similar to Earth and Venus. Orbit: Proxima Centauri b orbits its host star, Proxima Centauri, at a very close distance, approximately 0.05 astronomical units (AU), or about 7.5 million kilometers (4.7 million miles). It completes an orbit in just around 11.2 Earth days. Habitability: Proxima Centauri b is located within the habitable zone (Goldilocks zone) of its star. This means it is in the region where conditions for liquid water to exist on the surface are possible, a key factor for potential habitability. 2. Atmosphere of Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing the atmospheres of exoplanets, especially those as distant as Proxima Centauri b, is a challenging task and often requires advanced telescopes and instruments. 3. The Search for Extraterrestrial Life or Aliens: Proxima Centauri b has generated significant interest in the search for extraterrestrial life due to its proximity to Earth and its location within the habitable zone. Scientists and astronomers are particularly interested in studying exoplanets like Proxima Centauri b because they could offer insights into the potential for life beyond our solar system. The search for extraterrestrial life extends beyond Proxima Centauri b and includes the study of other exoplanets both within and outside the habitable zone. Key aspects of this search involve looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. The discovery of life, if it exists, on Proxima Centauri b or any other exoplanet would be a profound scientific breakthrough and could have far-reaching implications for our understanding of life's prevalence in the universe. It's important to note that as of my last knowledge update in September 2021, there is no definitive evidence of extraterrestrial life, and the search continues to be an active and ongoing scientific endeavor. Future missions and advanced technology, such as the James Webb Space Telescope, are expected to provide more data and insights into the atmospheres and potential habitability of exoplanets like Proxima Centauri b. Comparison with Earth Proxima Centauri b and Earth are both planets, but they have significant differences in terms of their characteristics, orbits, and potential habitability. Here's a comparison between the two: 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms, making it a terrestrial planet with a solid surface. Proxima Centauri b: Proxima Centauri b is classified as an exoplanet, and its size and mass are roughly similar to Earth's, with a mass approximately 1.3 times that of Earth. This places it in the category of terrestrial exoplanets. 2. Parent Star and Orbit: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). It takes approximately 365.25 days to complete one orbit. Proxima Centauri b: Proxima Centauri b orbits a red dwarf star known as Proxima Centauri, which is cooler and smaller than the Sun. Its orbital distance is very close to its parent star, about 0.05 astronomical units, which is much closer than Earth's distance from the Sun. Proxima Centauri b completes an orbit in approximately 11.2 Earth days. 3. Habitability and Atmosphere: Earth: Earth is known for its diverse and life-sustaining atmosphere composed primarily of nitrogen (about 78%) and oxygen (about 21%), with trace amounts of other gases. It has liquid water on its surface, a stable climate, and a variety of ecosystems that support a wide range of life forms. Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing exoplanet atmospheres, especially those as distant as Proxima Centauri b, is challenging and requires advanced telescopes and instruments. 4. Potential for Extraterrestrial Life: Earth: Earth is the only known planet to host a wide variety of life forms, from microorganisms to complex multicellular organisms, including humans. Proxima Centauri b: Proxima Centauri b is located within the habitable zone of its star, which means it could have conditions suitable for liquid water to exist on its surface. However, the presence of life on Proxima Centauri b is purely speculative at this point, and more research is needed to assess its habitability and the potential for extraterrestrial life. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f KEPLER-452b
- Trappist-1 | SPACELIA
TRAPPIST-1 TRAPPIST-1 is a star system located about 39 light-years away from Earth in the constellation Aquarius. It gained significant attention and interest in the scientific community and the public due to the discovery of seven Earth-sized exoplanets orbiting the ultra-cool dwarf star TRAPPIST-1. Here's a detailed explanation of the TRAPPIST-1 system, including information about its characteristics, the potential for atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of TRAPPIST-1: Star Type: TRAPPIST-1 is an ultra-cool dwarf star classified as an M8V-type star. It is much cooler and smaller than our Sun, with a surface temperature of about 2,550 degrees Celsius (4,622 degrees Fahrenheit). Number of Exoplanets: The TRAPPIST-1 system is known to host seven exoplanets. These exoplanets are designated as TRAPPIST-1b, c, d, e, f, g, and h. They were discovered through the transit method, which involves observing the periodic dimming of the star's light as the planets pass in front of it. Habitability Zone: Several of the exoplanets in the TRAPPIST-1 system are located within the habitable zone, also known as the Goldilocks zone. This is the region around a star where conditions might be suitable for liquid water to exist on the planets' surfaces, a key factor for potential habitability. 2. Atmosphere of TRAPPIST-1 Exoplanets: Information about the specific composition and characteristics of the atmospheres of the TRAPPIST-1 exoplanets is not fully known. Detecting and characterizing exoplanet atmospheres is a challenging task that requires advanced telescopes and instruments. Astronomers have conducted studies to analyze the potential atmospheres of these exoplanets. The presence of atmospheres would be an essential factor in determining their habitability and potential for hosting life. 3. The Search for Extraterrestrial Life or Aliens: The discovery of seven Earth-sized exoplanets in the TRAPPIST-1 system, especially those within the habitable zone, has made TRAPPIST-1 a significant target in the search for extraterrestrial life. The habitable zone is a region where conditions might be right for liquid water to exist, a key ingredient for life as we know it. The search for extraterrestrial life involves looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. It also involves the study of planetary conditions, including surface temperature and radiation levels, to assess the potential for life to thrive. While the discovery of the TRAPPIST-1 exoplanets is exciting, the actual presence of extraterrestrial life remains purely speculative. The search for life beyond Earth is an ongoing scientific endeavor, and it requires more advanced technology and instruments, including next-generation telescopes like the James Webb Space Telescope, to provide more insights. 4. The Possibility of Aliens: The term "aliens" typically refers to intelligent extraterrestrial beings. While the search for microbial life or even simple life forms is a primary focus in astrobiology, the search for intelligent civilizations, often referred to as the search for extraterrestrial intelligence (SETI), remains an active area of research. SETI involves listening for radio signals or other types of communication from advanced civilizations in the universe. So far, no definitive evidence of extraterrestrial intelligent life or aliens has been found. Comparison with Solar System The TRAPPIST-1 system and our solar system are two different planetary systems in the Milky Way galaxy. While both contain multiple celestial bodies, there are significant differences between them. Here's a comparison of the TRAPPIST-1 system and our solar system: Number of Stars: Solar System: Our solar system is a single-star system, with the Sun as the central star. TRAPPIST-1 System: The TRAPPIST-1 system is a multi-star system, consisting of a red dwarf star called TRAPPIST-1 and at least seven confirmed planets orbiting it. Central Star: Solar System: The Sun is a G-type main-sequence star (a yellow dwarf). TRAPPIST-1 System: TRAPPIST-1 is an M-type dwarf star, which is much cooler and less massive than the Sun. Planetary Orbits: Solar System: In the solar system, planets have relatively stable, nearly circular orbits. TRAPPIST-1 System: The TRAPPIST-1 planets have much closer orbits to their star, with some being in the habitable zone. These orbits are closer to their star compared to most planets in our solar system. Planetary Composition: Solar System: The planets in our solar system have diverse compositions. The inner planets (Mercury, Venus, Earth, and Mars) are rocky, while the outer planets (Jupiter, Saturn, Uranus, and Neptune) are gas giants or ice giants. TRAPPIST-1 System: The TRAPPIST-1 planets are believed to be rocky, similar to the inner planets in our solar system. Some may have liquid water on their surfaces. Habitability: Solar System: Earth, in our solar system, is the only known planet with conditions suitable for life as we know it. TRAPPIST-1 System: Some of the TRAPPIST-1 planets are in the habitable zone, where liquid water could exist. This makes them potential candidates for studying the possibility of life beyond Earth. Number of Planets: Solar System: Our solar system has eight recognized planets, with Pluto being classified as a dwarf planet. TRAPPIST-1 System: At least seven planets have been discovered in the TRAPPIST-1 system. Planetary Sizes: Solar System: The planets in our solar system vary in size from small rocky planets like Mercury to massive gas giants like Jupiter. TRAPPIST-1 System: The TRAPPIST-1 planets are thought to be similar in size to Earth and its neighboring planets. Exploration: Solar System: Our solar system has been extensively explored by spacecraft, including missions to all eight recognized planets, numerous moons, and even a few asteroids and comets. TRAPPIST-1 System: As of my knowledge cutoff date in September 2021, the TRAPPIST-1 system had been observed and studied from a distance through telescopes, but no direct spacecraft missions had been sent to explore it. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b KEPLER-186f Proxima Centauri b
- Courses (All) | SPACELIA
MISSIONS Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More