top of page

Search Results

تم العثور على 83 عنصر لـ ""

  • Black Hole | SPACELIA

    Black Hole A black hole is an extremely dense region in space where gravity is so strong that nothing, not even light, can escape its grasp. It forms when a massive star collapses, creating a point called a singularity surrounded by an event horizon, beyond which nothing can return. Black holes come in various sizes, including stellar-mass and supermassive black holes. What is Black Hole and how Black Hole forms? Today we will talk about black holes, first let us know how black holes are formed, to keep a star in balance, its gravitational force pushes it inwards and the nuclear fusion taking place in its center pushes it outwards. And with the help of these two pushing forces, the star remains under control. But when the helium gas inside the star starts getting exhausted then the nuclear energy of the star gradually gets exhausted, then gradually the star becomes a red giant, at this time the fusion happening on the star which prevents the gravity from pushing it inside. The force is no longer there and due to gravity the star seems to shrink in on itself and a time comes when the center of the star cannot handle so much gas and a big explosion occurs which we call a supernova, and at the end of the supernova A black hole is formed in A black hole has so much mass that even light gets trapped in front of its gravity and it also absorbs light into itself. Black hole is the center of an infinite mass around which there is a ring like event horizon. Original image of Black hole in i.c.1, explanation of black hole formation i.c.2 i.c.1 Black Hole event horizon. i.c.1 Black Hole formation. Time travel using Black Hole? I hope you have understood what a black hole is and how it is formed. There are many more questions about black holes for which we do not have answers, what is inside a black hole?, where do things go inside a black hole?, does it have an alternative white hole?, do all these things come out of the white hole? Does it come?, Can a black hole take us to our past or make us travel through time? We have not been able to find the answer to this mystery. Suppose we have detected a black hole, yet the nearest black hole is also 1560 light years away from us! If we travel at the speed of light, it will be approximately 1560 years and we can travel in space at the speed of light. Couldn't even find any solution. So as of today it is not possible to reach a black hole. But what's the point in believing, so let's take time and even if we reach the black hole, there will be many more difficulties in front of us, which I will tell you later. You all must have seen the movie Interstellar, in which a planet is shown which is very close to the black hole and we all know that the black hole has infinite mass and its space-time curvature is also very high, meaning it is very close to the black hole. Even spending a little time is a lot of years according to Earth, it is shown in this movie that 1 hour spent on Miller's Planet is equal to 7 years on Earth. And we call this effect time dilation. But we have to go inside it, not around it, and if the black hole also pulls the light inside itself, then we will have to travel at a speed faster than the light, there is another twist in this, we will first go to the event horizon of the black hole where all the things It starts rotating around the black hole, if we can survive there then we can reach inside the black hole, but we do not even know what is inside the black hole. So if we cross all these things then we can go inside the black hole. Scientists speculate that a black hole may act like a worm hole, just like the one shown in Interstellar. If you also want such an article like Worm Hole, then subscribe to the website so that you get the notification of that article. Now you can understand how complex the black hole is and we have not been able to solve the entire mystery of the black hole yet. i.c.3 Black hole event horizon. i.c.4 Black hole curvature comparison i.c.5 Black hole time travel. Black Hole images Other Articles.... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop Parallel World Travel Age of our Universe Zombie Planets

  • spacerium | SPACELIA

    OUR BLOGGING PAGE SPACERIUM

  • Aditya L-1 - Exploration of SUN | SPACELIA

    Aditya L-1 - Exploration of SUN Unraveling the Cosmic Tapestry: Chandra X-ray Observatory's Saga ​ In the grand cosmic theater, where the universe dons its most enigmatic costumes, the Chandra X-ray Observatory stands as humanity's eye into the unseen realms. Launched by NASA in 1999, Chandra has been an unrivaled pioneer, deciphering the universe's secrets encoded in X-ray frequencies. In this comprehensive exploration, we embark on a captivating journey, unveiling the multifaceted story of Chandra – its functions, motives, structure, historic milestones, and the mesmerizing discoveries that have reshaped our understanding of the cosmos. ​ X-ray Vision: Chandra's Functions and Motive Unveiling Cosmic Hotspots Chandra's primary function is to observe high-energy X-rays emanating from celestial objects. By capturing these elusive rays, it unveils the hottest, most dynamic regions of the universe, revealing details invisible to other telescopes. ​ Decoding Stellar Life Cycles From supernova remnants to pulsars and black holes, Chandra plays a crucial role in decoding the life cycles of stellar objects. It's a cosmic detective, providing insights into the birth, evolution, and demise of stars. ​ Probing Galactic Nuclei Chandra's gaze extends to the hearts of galaxies, where supermassive black holes reside. By studying the radiation emitted from these active galactic nuclei, scientists gain essential clues about the cosmic processes at play. ​ Charting the Cosmic Web Chandra contributes to mapping the large-scale structure of the universe, uncovering the vast cosmic web formed by the distribution of hot gas between galaxies. ​ Engineering Marvel: The Structure of Chandra X-ray Observatory Mirrors of Precision Chandra's mirrors are coated with a thin layer of iridium, a choice that enhances reflectivity in the X-ray range. Nested mirrors, rather than traditional lenses, focus the incoming X-rays onto detectors with exceptional precision. Space-Resilient Design Crafted to endure the rigors of space, Chandra orbits Earth in an elliptical trajectory, minimizing interference from the planet's radiation belts. This resilient design ensures the telescope's longevity and sustained scientific contributions. Chronicles of Chandra: A Historic Journey Launch into the Unknown Chandra embarked on its cosmic odyssey aboard the Space Shuttle Columbia on July 23, 1999. Named after the astrophysicist Subrahmanyan Chandrasekhar, the telescope began its mission to unravel the mysteries of the X-ray universe. Milestones and Legacy Throughout its journey, Chandra has left an indelible mark on astrophysics. From confirming the existence of dark energy to identifying numerous neutron stars, its discoveries have rewritten the cosmic narrative. Conclusion: Chandra's Ongoing Odyssey As we reflect on the cosmic voyage of the Chandra X-ray Observatory, we recognize its indispensable role in reshaping our cosmic comprehension. The observatory continues to unravel the X-ray mysteries, painting a vivid portrait of the universe's hidden intricacies. "X-ray Pioneers" pays homage to the brilliance of Chandra – a beacon illuminating the celestial darkness, guiding us into the depths of the cosmos where new revelations await discovery. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Zombie Planets Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1 Osiris-REx Mission Chandra X-Ray Observatory Chandrayan-3

  • Worm Hole | SPACELIA

    Worm Hole Let's begin the curvature of worm hole What is a worm hole?, how are worm holes formed?, and what is the function of a worm hole?, I will tell you all this in this article today, so first let's talk about what a worm hole is, how these worm holes are made and How it works, so worm hole connects two different places in space, just like a bridge, so that we can cover long distances in a short time, as you see in the image below, worm hole space. It bends like this and we can show it as a circle and a circle is a sphere in 3D, so the worm hole is also like a sphere. By traveling in this, you can bridge the distance between two places in a very short time, but a big question is that how are worm holes formed? We have heard about black holes that they are formed after supernova, but worm holes are We do not know how they are formed, worm holes are not a natural phenomenon, we have to create them artificially. But till date we have not succeeded in creating such a big worm hole, we have definitely done this test on a very small level but it is not enough for a human being, so only some advanced civilization can do this in the future. You are controlling us and they can create a worm hole just like the interstellar movie.

  • Existence of Multiverse | SPACELIA

    Existence of Multiverse Overview what is multiverse? , Does it exist in real?, and if yes then how, I will also show its proof and an experiment. In this article, you will know the secret of the multiverse and all the facts related to it and will also know whether it exists or not. 1.1 Imaginary view of multiverse Perspective.... We already know about the multiverse that this is our universe and there must be another such universe outside this universe and we have named it multiverse, but can't it be that when the Big Bang happened, different universes were created? It must have happened, it must be strange to hear but I will explain it to you very well. You must have read in Science in class 8-9 that when milk is heated, the particles below its surface get heated and come up and the cold particles from above come down and in the same way the milk gets heated, but this one feels hotter. After this, its hot molecules come up through an air bubble, which takes time and the milk gets heated quickly, so what is the relation of this to our theory?, like the milk particles get heated more and form a bubble type structure. Similarly, when the Big Bang happened, the particles were spread among the molecules, then that energy would also have taken a bubble-like form and we live in one of those bubble type structures. 1.2 Bubble type structure in milk Where is proof?..... 1.3 Experience of deja vu. By now you must have understood all the society but still there must be a question somewhere in your mind that proving the multiverse only on the medium of milk does not seem confidential. Yes, so now I will tell you some experiments and proofs, imagine that you are looking at the Taj Mahal and suddenly this thought came to you that yes, I have already seen the Taj Mahal and that too while standing at the same place, or Sometimes it may have happened that you are meeting someone for the first time and you feel that you have met them before, 94% of the people in the whole world have felt such things, this is called déjà vu effect, it means first. Some work done The thesis behind this is that when your timeline collides with your avatar, which is in another universe of the multiverse, then you feel that your other avatar has done this thing earlier and that thing is saved in your memory. It happens and when you see that thing again, you feel that you have done it before. We can compare this thing with the multiverse, and somewhere this thing may have a connection with the multiverse.

  • Virtual Space | SPACELIA

    Virtual Space Tour Enjoy your virtual space tour experience with high quality 3d space tour from SPACELIA.

  • Space Discoveries of 2021 | SPACELIA

    2021 Space Discoveries Amateur astronomer discovers a new moon around Jupiter A previously-unknown moon has been detected around the largest planet in the solar system. Jupiter is a giant, so it gravitationally attracts many objects into its vicinity. Earth has one major moon, Mars has two: but Jupiter boasts at least 79 moons, and there may be dozens or hundreds more of them that astronomers have yet to identify. The latest discovery was made by amateur astronomer Kai Ly, who found evidence of this Jovian moon in a data set from 2003 that had been collected by researchers using the 3.6-meter Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. Ly they confirmed the moon was likely bound to Jupiter's gravity using data from another telescope called Subaru. The new moon, called EJc0061, belongs to the Carme group of Jovian moons. They orbit in the opposite direction of Jupiter's rotation at an extreme tilt relative to Jupiter's orbital plane. NASA will return to Venus this decade Mars is a popular target for space agencies, but Earth's other neighbor has been garnering more attention recently. In 2020, researchers announced that they had detected traces of phosphine in Venus' atmosphere. It is a possible biosignature gas, and the news certainly reawakened interest in the planet. In early June 2021, NASA announced it will launch two missions to Venus by 2030. One mission, called DAVINCI+ (short for Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging, Plus) will descend through the planet's atmosphere to learn about how it has changed over time. The other mission, VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) will attempt to map the planet's terrain from orbit like never before. Venus has been visited by robotic probes, but NASA has not launched a dedicated mission to the planet since 1989. The interest in Martian exploration may be one reason why Venus has been neglected in recent decades, but the second planet from the sun is also a challenging place to study. Although it may have once been a balmy world with oceans and rivers, a runaway greenhouse effect took hold of Venus around 700 million years ago and now the planet's surface is hot enough to melt lead. The sun is reawakening The sun was experiencing a quiet time in its roughly decade-long cycle, but it is now exiting that phase. The sun has had very little activity in recent years, but the star's surface is now erupting in powerful events that spew out charged particles towards Earth. In early November, for instance, a series of solar outbursts triggered a large geomagnetic storm on our planet. This eruption is known as a coronal mass ejection, or CME. It's essentially a billion-ton cloud of solar material with magnetic fields, and when this bubble pops, it blasts a stream of energetic particles out into the solar system. If this material heads in the direction of Earth, it interacts with our planet's own magnetic field and causes disturbances. These can include ethereal displays of auroras near Earth's poles, but can also include satellite disruptions and energy losses. James Webb Space Telescope flies into space A whole new era of space science began on Christmas Day 2021 with the successful launch of the world's next major telescope. NASA, the European Space Agency and the Canadian Space Agency are collaborating on the $10 billion James Webb Space Telescope (JWST), a project more than three decades in the making. Space telescopes take a long time to plan and assemble: The vision for this particular spacecraft began before its predecessor, the Hubble Space Telescope, had even launched into Earth orbit. Whereas Hubble orbits a few hundred miles from Earth's surface, JWST is heading to an observational perch located about a million miles from our planet. The telescope began its journey towards this spot, called the Earth-sun Lagrange Point 2 (L2), on Dec. 25, 2021 at 7:20 a.m. EST (1220 GMT) when an Ariane 5 rocket launched the precious payload from Europe's Spaceport in Kourou, French Guiana. The telescope will help astronomers answer questions about the evolution of the universe and provide a deeper understanding about the objects found in our very own solar system. Event Horizon Telescope takes high-resolution image of black hole jet In July 2021, the novel project behind the world's first photo of a black hole published an image of a powerful jet blasting off from one of these supermassive objects. The Event Horizon Telescope (EHT) is a global collaboration of eight observatories that work together to create one Earth-sized telescope. The end result is a resolution that is 16 times sharper and an image that is 10 times more accurate than what was possible before. Scientists used EHT's incredible abilities to observe a powerful jet being ejected by the supermassive black hole at the center of the Centaurus A galaxy, one of the brightest objects in the night sky. The galaxy's black hole is so large that it has the mass of 55 million suns. Scientists spot the closest-known black hole to Earth Just 1,500 light-years from Earth lies the closest-known black hole to Earth, now called "The Unicorn ." Tiny black holes are hard to spot, but scientists managed to find this one when they noticed strange behavior from its companion star, a red giant. Researchers observed its light shifting in intensity, which suggested to them that another object was tugging on the star. This black hole is super-lightweight at just three solar masses. Its location in the constellation Monoceros ("the unicorn") and its rarity have inspired this black hole's name. Earth's second 'moon' flies off into space An object dropped into Earth's orbit like a second moon, and this year, it made its final close approach of our planet. It is classified as a "minimoon," or temporary satellite. But it's no stray space rock — the object, known as 2020 SO, is a leftover fragment of a 1960s rocket booster from the American Surveyor moon missions. On Feb. 2, 2021, 2020 SO reached 58% of the way between Earth and the moon, roughly 140,000 miles (220,000 kilometers) from our planet. It was the minimoon's final approach, but not its closest trip to Earth. It achieved its shortest distance to our planet a few months prior, on Dec. 1, 2020. It has since drifted off into space and away from Earth's orbit, never to return. Parker Solar Probe travels through the sun's atmosphere This year, NASA's sun-kissing spacecraft swam within a structure that's only visible during total solar eclipses and was able to measure exactly where the star's "point of no return" is located. The Parker Solar Probe has been zooming through the inner solar system to make close approaches to the sun for the past three years, and it is designed to help scientists learn about what creates the solar wind, a sea of charged particles that flow out of the sun and can affect Earth in many ways. The spacecraft stepped into the sun's outer atmosphere, known as the corona , during its eight solar flyby. The April 28 maneuver supplied the data that confirmed the exact location of the Alfvén critical surface: the point where the solar wind flows away from the sun, never to return. The probe managed to get as low as 15 solar radii, or 8.1 million miles (13 million km) from the sun's surface. It was there that it passed through a huge structure called a pseudostreamer, which can be seen from Earth when the moon blocks the light from the sun's disk during a solar eclipse . In a statement about the discovery, NASA officials described that part of the trip as "flying into the eye of a storm." Perseverance begins studying rocks on Mars Last but not least, this year marked the arrival of NASA's Perseverance rover on Mars. The mission has been working hard to find traces of ancient Martian life since it reached the Red Planet on Feb. 18, 2021. Engineers have equipped Perseverance with powerful cameras to help the mission team decide what rocks are worth investigating. One of Perseverance's most charming findings has been "Harbor Seal Rock ," a curiously-shaped feature that was probably carved out by the Martian wind over many years. Perseverance has also obtained several rock samples this year, which will be collected by the space agency for analysis at some point in the future. Perseverance is taking its observations from the 28-mile-wide (45 kilometers) Jezero Crater, which was home to a river delta and a deep lake billions of years ago.

  • KEPLER-452b | SPACELIA

    KEPLER-452b Kepler-452b, often referred to as "Earth's cousin," is an exoplanet that was discovered by NASA's Kepler Space Telescope. It was announced as a significant discovery in July 2015. Here's a detailed explanation of Kepler-452b, including information about its characteristics, atmosphere, and the potential for extraterrestrial life 1. Characteristics of Kepler-452b: Size and Mass: Kepler-452b is considered a super-Earth, as it is larger than Earth, with an estimated radius about 1.6 times that of Earth. However, its exact mass is still uncertain, as it depends on its composition, which is not precisely known. Orbit: Kepler-452b orbits a star known as Kepler-452, which is very similar to our Sun in terms of both size and temperature. Its orbit around Kepler-452 takes approximately 385 days, making it roughly analogous to Earth's year. Distance from Star: Kepler-452b is located within the habitable zone of its parent star. The habitable zone, also known as the "Goldilocks zone," is the region around a star where conditions may be right for liquid water to exist on the planet's surface—a key factor for the potential development of life as we know it. Age: The host star Kepler-452 is older than our Sun, estimated to be around 6 billion years old, which could have allowed more time for life to potentially develop on Kepler-452b. ​ 2. Atmosphere of Kepler-452b: The exact composition and characteristics of Kepler-452b's atmosphere are not currently known. The detection and analysis of exoplanet atmospheres are challenging tasks and often require advanced instruments like the James Webb Space Telescope (scheduled for launch) to provide more detailed information. The presence and composition of an atmosphere are critical factors in determining the potential habitability of an exoplanet. An atmosphere can help regulate temperature, protect against harmful radiation, and play a role in supporting life processes. ​ 3. Potential for Extraterrestrial Life: Kepler-452b's location within the habitable zone of its star makes it an intriguing candidate for the potential existence of extraterrestrial life. The habitable zone represents the region where conditions might be suitable for liquid water, a fundamental ingredient for life as we know it, to exist on the planet's surface. However, the presence of liquid water alone does not guarantee the existence of life. Many other factors, such as the planet's atmosphere, geological activity, and the availability of essential chemical ingredients, would also influence its habitability. Detecting signs of life on Kepler-452b or any exoplanet is extremely challenging and would likely require advanced telescopes capable of analyzing the planet's atmosphere for biomarkers (e.g., oxygen and methane) or other potential signs of biological activity. Kepler-452b and Earth are both planets, but they have some significant differences, as well as similarities. Here's a comparison between the two: 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms. Kepler-452b: Kepler-452b is estimated to be about 1.6 times the size (radius) of Earth, but its mass is not precisely known. It's considered a super-Earth. 2. Orbit and Parent Star: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). Kepler-452b: Kepler-452b orbits a G-type main-sequence star (G2V) known as Kepler-452, which is very similar to the Sun. Its orbital period is approximately 385 Earth days. 3. Habitability and Atmosphere: Earth: Earth has a diverse and life-sustaining atmosphere composed primarily of nitrogen (78%) and oxygen (21%), with trace amounts of other gases. It has liquid water on its surface and a stable climate, making it highly habitable. Kepler-452b: The exact composition of Kepler-452b's atmosphere is not known, and its habitability is still uncertain. It's located within the habitable zone of its star, indicating the potential for liquid water, but more information about its atmosphere is needed to assess its suitability for life. 4. Age: Earth: Earth is approximately 4.5 billion years old. Kepler-452b: The host star Kepler-452 is estimated to be about 6 billion years old, making it older than the Sun. This could have implications for the potential development of life on the planet. 5. Surface Conditions: Earth: Earth has a diverse range of surface conditions, including continents, oceans, and various climate zones. It supports a wide variety of life forms and ecosystems. Kepler-452b: The specific surface conditions of Kepler-452b, such as the presence of oceans or continents, are not known due to limited observational data. 6. Potential for Extraterrestrial Life: Earth: Earth is known to host a vast array of life, from microorganisms to complex multicellular organisms, including humans. Kepler-452b: Kepler-452b is considered a potentially habitable exoplanet due to its location within the habitable zone, but the presence of extraterrestrial life on the planet is purely speculative at this point. More research and observations are needed to assess its habitability and the potential for life. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1

  • Blackhole Information Paradox | SPACELIA

    Blackhole Information Paradox The Black Hole Information Paradox is a long-standing problem in theoretical physics and astrophysics, concerning the conservation of information in the presence of black holes, which are regions of spacetime where gravity is so strong that not even light can escape from them. The paradox arises from the clash between the principles of quantum mechanics and general relativity. ​ In classical physics, black holes are described by solutions to Einstein's field equations of general relativity, which predict that anything that falls into a black hole will be irretrievably lost behind its event horizon, a boundary beyond which nothing can escape. This implies that any information about the matter that formed the black hole, such as its mass, charge, and angular momentum, is lost to the outside universe. ​ However, according to the principles of quantum mechanics, information cannot be destroyed. Instead, it should always be possible, in principle, to trace the evolution of a quantum system backwards in time and reconstruct the initial state from the final state. This principle is known as unitarity. ​ The paradox arises because the classical description of black holes seems to violate the principles of quantum mechanics. If information is lost behind the event horizon, then the evolution of a black hole's state seems to violate unitarity, leading to a breakdown of quantum mechanics. ​ Various proposed solutions to the Black Hole Information Paradox have been put forward over the years, but none have been universally accepted. Some of these proposals include: ​ Hawking Radiation and Information Loss: Stephen Hawking proposed that black holes emit radiation (now known as Hawking radiation) due to quantum effects near the event horizon. This radiation carries away energy from the black hole, eventually causing it to evaporate completely. Initially, it was believed that this process led to the loss of information, but later work suggested that information might be encoded in the radiation, leading to the idea of "black hole complementarity" or the "firewall paradox." Firewall Paradox: Proposed as a resolution to the information paradox, the firewall paradox suggests that an observer falling into a black hole would encounter a firewall of high-energy particles at the event horizon, contradicting the smooth spacetime predicted by general relativity. This proposal has sparked significant debate within the physics community. Holographic Principle and AdS/CFT Correspondence: The holographic principle suggests that all the information contained within a region of space can be encoded on its boundary. The AdS/CFT correspondence, a conjectured equivalence between certain gravitational theories and quantum field theories, has been used to study black hole physics in this context, offering potential insights into the resolution of the information paradox. Quantum Gravity and String Theory: Some researchers believe that a theory of quantum gravity, which successfully unifies quantum mechanics and general relativity, could resolve the information paradox. String theory is one candidate for such a theory, but it remains highly speculative and has not yet been definitively confirmed. Information Preservation: Other proposals suggest that information may somehow be preserved in a subtle way within the black hole or its radiation, allowing for the eventual recovery of the initial state.Despite decades of research, the Black Hole Information Paradox remains unsolved, and it continues to be a topic of active investigation and debate within the physics community. Resolving this paradox is crucial for developing a complete understanding of the fundamental laws governing the universe. Chat Section If you have any question ask me here.... Other Articles...... Theories Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1 Today Onward Theory Parallel World Travel We are our GOD Inflationary Cosmology

  • Parallel World Travel | SPACELIA

    Parallel World Travel We have heard a lot about time travel, it feels good to hear it but only in imagination and theories, we already know the rest of the reality, but today we have brought another theory in front of you which can happen in the past. There is a thesis based on the above but yes, you will definitely feel happy after reading it. Over View.... So let me give you an overview of this theory, in this we have tried to understand how time travel can happen in the past, because we all know that if we want, we can do it in the future, but time can never shrink. This is why it is impossible to travel in the past, but if we say that it is possible and that anti-reaction will increase your interest, then if we have to travel in time then it is possible only in a parallel universe. But we cannot understand the parallel world well yet, so we will have to create this theory accordingly, then the time travel that will happen will happen in the parallel world that we have created with our own thoughts. Because till now the parallel universe has remained only a thesis. So stick to this theory and the whole society will follow you. If you have any questions, you can tell me in the chat box below, I will definitely answer you. Lets begin the journey After starting this I want to ask you question Is time travel in past can be possible because if we do there would be so many paradoxes we have to face like Grandfather paradoxes and Butterfly Effect. If you don’t know about these then might be you think that what’s these..? ​ Grandfather Paradox- Let’s suppose you have a time machine and you traveled in past And unfortunately because of You your Grandfather got killed in his childhood in the age of 6. Then what happen? Just think logically that if your Grandfather never married with any woman then your father will not birth in this world and if he don’t birth in this world You might be not birth in the world So in present if you don’t exists how did you traveled in past and killed your Grandfather? Tricky right… You can read About the Butterfly effect By yourself…. And cause of we are humans and we often made mistakes we can say that there will be a huge chance that we messed up past.. So with this, This is confirm that we cannot travel in past. Even not in the theory. But we are humans and we are free to think and assume don’t we? Of course many scientists claim that past time travel isn’t possible. So my theory is What if we do travel in past and change it but in result nothing will change in our world cause of our mistake or action, Note that I said in our world. As we know we are not alone in the universe there can be a lot of creature like us or advance from us or lower from us in different sector. And there would be a chance that there would be an parallel universe like us. Parallel Universe is a universe which had many similarities and many differences too. This is a hypothesis universe but it can be true. My theory is a mixture of parallel universe and time travel. There are huge chance that we humans will be able to travel in past but the problem will be we can only observe them but can’t change anything if we dare and try to change anything then The past that we traveled will become a parallel universe and continuous it’s own different future than us. In short if we do the grandfather paradox there then even if we kill the grandfather we will be secure but in that died grandfather universe we actually never be able to exists there. It might be the reason why the party of the time travelers by Stephen hawking was empty cause maybe the travelers don’t want to change the universe. With this almost every paradox can be solved. And whenever we felt Déjà vu there would be the cause of we already felt it on parallel universe and we are connected by that ourselves from that universe to this Universe.. Every action has an appropriate reaction We all know that every action has an appropriate reaction, so you must be thinking that you have said that time travel will happen in the past but not in our parallel universe, but will it have any impact in our universe? , Can it have any opposing impact? Well, we can think something now, but because we have given you this universe, it must have been created by imagination and if we do anything in it, we will not see any effect on the present. We will not get it, that is a different matter that this is just our thought, so maybe there can be some reaction. You can tell in the chat box given below whether you have any idea whether this could be a reaction? Chat Section If you have any question ask me here....

  • Heliocentric System | SPACELIA

    Map of our solar system Heliocentric System Heliocentric system is a fully functional detail map of our solar system with sun and all planets and natural satellites of all planets, asteroids and comets also. we designed this map as natural and graphical and easy to understand our solar system at first time. SOLAR SYSTEM

  • Trappist-1 System | SPACELIA

    Map of Trappist-1 star system Trappist-1 System Heliocentric system is a fully functional detail map of our solar system with sun and all planets and natural satellites of all planets, asteroids and comets also. we designed this map as natural and graphical and easy to understand our solar system at first time. Trappist-1 b c d e f g h

  • Multiness of Thoughts | SPACELIA

    Multiness of Thoughts What we doing, what we experiencing, what we thinking is a multiness of thoughts Multiness of Thoughts What we are experiencing right now, whether we have a dream or a thought represents o ur future, it means that what we think will happen to us, so always keep positive thinking. You may have seen the movie Interstellar where a man controls the fourth diamentio from the future and how our present is connected to our past, this basic concept is what I call the concept of Multiness of Thoughts. this concept is also connected with quantum theories, because this theory also say that all thigs which we see is create with our thoughts and after we see it's die immediately. An idea that forces us to think, what you are thinking now or what is happening to you is dependent on your footing, but how? What if you go ahead and get a good job, but you don't study? So you may not have sat on that achievement. Just like in the interstellar movie, your future is writing the present to you, the result of what you are doing now will be found in the future, so it is you who controls you from the future in the present. And against this, even if you connect the concept to the deje wan effect, you will get today's result, if future is actual then present, not actually, but yes it can be said that future is as equivalent as our present thoughts or our present situation right. And this universe is also a part of our concept, science su? Science is a medium to show our thoughts and our ability, so what is not like science? Not actually but science is a loop made up of our thoughts and just a thought? Is there a medium we use to present our skills? And all this is a multiplicity of ideas. It is human nature that if you think about something, then you walk in the light of that thing and your thoughts start to create that thing. So everything is just an illusion. We are a part of this universe, so whatever theories we have are the thoughts of our mind which we want to make true by any means. You must have experienced that sometimes when you go into deep thoughts, that thought seems true to you in real life too and this also happens with our dreams, then everything is fine, it is just an illusion of our thoughts and brain. This theory is the theory of multiness of thoughts. Other Articles...... Dark Energy Zombie Planets The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f Proxima Centauri b TRAPPIST-1

  • Spacelia App | SPACELIA

    Install Our App Install SPACELIA app for group quiz, news and latest updates about this site changes. install it in your compatible platform. Download the app now! Get Updates Get the latest app version, news & updates. Subscribe to our newsletter. Subscribe Thanks for submitting!

  • Open Positions | SPACELIA

    Job Openings Research Opportunities at Spacelia Digital Media Manager We are seeking a talented individual to fill the position of Online Social Media and Data Manager. This dynamic role offers the opportunity to leverage your social media expertise and data analysis skills to develop and execute engaging online strategies. Blog Website Manager Our company is seeking a creative and analytical Blog and Website Manager to join our team. This position offers the chance to develop and manage our online presence, crafting compelling content for our website and blog while utilizing data to optimize website performance. Astrophysicist Are you passionate about unlocking the mysteries of the universe? Our company has an exciting opportunity for a brilliant astrophysicist and space researcher to join our team. In this role, you will be at the forefront of discovery, conducting cutting-edge research and contributing to our mission of furthering our understanding of the cosmos. Come Work with Us Join the Team Fill this form to work in SPACELIA, we appreciate talent and we salute young talent, so to be a SPACELIA join SPACELIA Position I'm applying for Apply Now Thanks for submitting!

  • Hubble's Deep Field | SPACELIA

    Hubble's Deep Field The Hubble Space Telescope has made over 1.5 million observations since its launch in 1990, capturing stunning subjects such as the Eagle Nebula and producing data that has been featured in almost 18,000 scientific articles. But no image has revolutionized the way we understand the universe as much as the Hubble Deep Field . A Core Sample of the Universe ​ The Hubble Deep Field image holds 342 separate exposures taken between December 18 and 28, 1995. The picture we see was assembled from blue, red, and infrared light. The combination of these images allows astronomers to infer the distance, age, and composition of the galaxies photographed. Bluer objects, for example, contain young stars or could be relatively close. Redder objects contain older stars or could be farther away. Most of the galaxies are so faint ― four billion times fainter than the human eye can see ― that they had never been observed before, even by the largest telescopes. “As the images have come up on our screens, we have not been able to keep from wondering if we might somehow be seeing our own origins in all of this,” Williams said at the time. “These past 10 days have been an unbelievable experience.” The “deep” in Hubble Deep Field refers to the telescope’s ability to look at some of these far, faint objects. Looking at far-away objects in space is like seeing back in time. Light moves at tremendous speed, but it still takes time to travel across the vastness of space. Even the light from our own Sun needs eight minutes and 20 seconds to reach Earth, so when we look at the Sun, we see it as it was a little more than eight minutes earlier. The farther away the object, the younger it appears in Hubble’s gaze. The Deep Field was like a core sample of space, showing galaxies at different and earlier stages of development the deeper they appeared in the image. Researchers from the State University of New York at Stony Brook analyzed the photo and chose several dozen candidates that could be more distant than any galaxies seen up to that point. They identified the galaxies based on their color, because more distant galaxies appear redder as the light reaches us. This happens because the light stretches as it travels through the universe, transforming into infrared wavelengths, which are redder. A 1998 follow-up infrared image taken with Hubble’s Near Infrared Camera and Multi-Object Spectrometer discovered galaxies believed to be over 12 billion light-years away, even farther than those seen in the Hubble Deep Field. Hubble Deep Field South After the success of the original Hubble Deep Field, astronomers sought new ways to increase our understanding of the universe. Since it would take 900,000 years for astronomers to observe the whole sky, they knew they would have to rely on more samples like the Hubble Deep Field to infer what the entire universe looks like. The Hubble Deep Field South focused on a region in the constellation Tucana, near the south celestial pole, and doubled the number of distant galaxies available to astronomers. Williams and a team of 50 astronomers and technicians at the Institute and at Goddard Space Flight Center in Greenbelt, Maryland, carried out the 10-day-long observation in October 1998. Hubble Ultra Deep Field ​ In 2004, Hubble captured a million-second-long exposure that contained 10,000 galaxies. This new image, the Hubble Ultra Deep Field, observed the first galaxies to emerge from the “dark ages,” a time just after the Big Bang. A servicing mission in 2002 had installed a new camera, called the Advanced Camera for Surveys. That camera had twice the field of view and a higher sensitivity than WFPC2, the camera that captured the original Deep Field. The final Ultra Deep Field photo is actually combined from an ACS image and an image from Hubble’s Near-Infrared Camera and Multi-object Spectrometer. “Hubble takes us to within a stone’s throw of the Big Bang itself,” said Massimo Stiavelli, an instrument scientist for Hubble at the Space Telescope Science Institute. From ground-based telescopes, the location of the Ultra Deep Field in the constellation Fornax ― right below the constellation Orion ― looked mostly empty, much like the other Deep Field locations, allowing for more distant observations to take place. The Ultra Deep Field image contained several odd galaxies, such as one shaped like a toothpick and another shaped like a bracelet link. Such galaxies come from a more chaotic time before the development of structured galaxies like the Milky Way. Ultra Deep Field data also taught astronomers that black holes at the center of galaxies likely grew over time, that large galaxies build up gradually as others merge and collide, and that some of the earliest galaxies were much smaller than our current Milky Way. Hubble Ultra Deep Field-Infrared ​ In 2009, Hubble captured near-infrared light wavelengths in the same region as the Ultra Deep Field, revealing galaxies formed just 600 million years after the Big Bang. The light from one object, called UDFj-39546284, traveled 13.2 billion light-years to reach Earth. It’s a compact galaxy made up of blue stars, and astronomers found that the rate of star formation grew by a factor of 10 in just over 200 million years ― that may sound like a long time to us, but it’s tiny for the universe. ​ ​ ​ Hubble eXtreme Deep Field In 2012, Hubble took it to the extreme. Astronomers combined 10 years of photographs taken of a region in the center of the original Ultra Deep Field. Even with its smaller view, the eXtreme Deep Field still showed 5,500 galaxies. The faintest galaxies visible in this image are one ten-billionth of what the human eye can see, and most of the galaxies shown are from when they were young and small, often colliding and merging together. ​ ​ ​ Ultra Deep Field 2012 After observations made over six weeks in August and September 2012, a team of astronomers discovered a population of seven primitive galaxies formed when the universe was just 3% of its present age. The observations supported the idea that galaxies may have provided enough energy to reheat the universe after the Big Bang. ​ ​ ​ Frontier Fields NASA’s Great Observatories ― Hubble, Spitzer, and Chandra ― teamed up in 2013 for the Frontier Fields, a bold multi-year campaign to provide critical data to aid investigations of dark matter and how galaxies change over time, among others. Abell 370 is a cluster with several hundred galaxies at its core. It was one of the first clusters where astronomers observed gravitational lensing and part of the Frontier Fields project. Credits: NASA, ESA, R. Bouwens and G. Illingworth (University of California, Santa Cruz) The campaign provided 12 new deep field images, and astronomers were able to detect galaxies 100 times fainter than those they observed in the Hubble Ultra Deep Field. Focusing on high-redshift galaxies and gravitational lensing, or the natural distortion of light from massive galaxy clusters, the team worked to detect galaxies too faint to be seen by Hubble alone. Such an undertaking propelled our understanding of the universe in ways that could only be achieved with all the Great Observatories working together. The campaign ended in 2017, and now astronomers can use the dataset to continue exploring the early universe. Not only did the Hubble Deep Field change how we understand the universe, it also changed how we share findings. “This coming together of the community to generate a shared, nonproprietary dataset was essentially unprecedented but has since become the model for the majority of large astronomical projects,” wrote University of Washington astronomer Julianne Dalcanton. “This new mode of operating has democratized astronomy.” Hubble’s data was compiled for the Legacy Field, a combination of nearly 7,500 Hubble exposures. It represents 16 years of observations, 265,000 galaxies, and 13.3 billion years, making it the largest collection of galaxies documented by Hubble. The role of exploring the early universe further will fall to the James Webb Space Telescope , expected to launch in late 2021. Designed to see even farther back than Hubble because of its powerful infrared vision, Webb promises exciting observations and new discoveries. But our evolving understanding began with Hubble, and a team not afraid to explore what looked like nothing.

  • Portfolio | SPACELIA

    Portfolio In the portfolio section, you will get the explanation of the topic with images so that you will be able to learn well and will not get bored.

  • Hubble's Planetary Discoveries | SPACELIA

    Hubble's Planetary Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Watching the weather patterns on the giant outer planets (Jupiter, Saturn, Uranus, and Neptune) has been an ongoing activity throughout Hubble’s lifetime. Jupiter's monster storm, the Great Red Spot, was once so large that three Earths would fit inside it. But new measurements by Hubble reveal that the largest storm in our solar system has downsized significantly. The Red Spot, which has been raging for at least a hundred years, is now only the width of one Earth. The storm images were taken in 1995, 2009, and 2014. The images were taken with Wide Field and Planetary Camera 2 (1995) and Wide Field Camera 3. The large Wide Field Camera 2 image of Jupiter was obtained in 2007, with its moon, Ganymede, just emerging from behind the planet. The semi-major axis of Jupiter's orbit about the Sun is 5.2 astronomical units (483 million miles or 778 million km). The planet has a diameter of roughly 88,789 miles (142,984 km) at the equator. This image of Europa is derived from a global surface map generated from combined NASA Voyager and Galileo space probe observations. The graphic shows the location of water vapor detected over Europa's south pole by Hubble in December 2012. The Hubble observations provide the best evidence to date of water plumes erupting off Europa's surface. Hubble didn't photograph plumes, so the plume and the illustration in the center are artist’s conceptions. However, Hubble observers used the Space Telescope Imaging Spectrograph to spectroscopically detect auroral emissions from oxygen and hydrogen. The aurora is powered by Jupiter's magnetic field. This is only the second moon in the solar system found ejecting water vapor from the frigid surface. Another of Jupiter’s moons, Ganymede, is also likely to have a subsurface ocean. Europa is the sixth closest Jovian moon. It is the smallest of the four Jovian satellites discovered by Galileo Galilei, but still the sixth largest moon in the Solar System. Europa was discovered by Galileo in 1610. Images taken in ultraviolet light by Hubble’s Space Telescope Imaging Spectrograph (STIS) show both Jupiter auroras in 1998, the oval-shaped objects in the inset photos. Ground-based telescopes cannot view these phenomena in ultraviolet light, as it is blocked by the Earth’s atmosphere. Auroras are curtains of light resulting from high-energy electrons racing along the planet's magnetic field into the upper atmosphere. The electrons excite atmospheric gases, causing them to glow. The electric-blue image of Jupiter’s northern aurora shows the main oval of the aurora, which is centered on the magnetic north pole, plus more diffuse emissions inside the polar cap. Though the aurora resembles the same phenomenon that crowns Earth's polar regions, the blue Hubble image shows unique emissions from the magnetic "footprints" of three of Jupiter's largest moons. (These points are reached by following Jupiter's magnetic field from each satellite down to the planet). Jupiter has at least 68 moons. Auroral footprints can be seen in this image from Io (along the left-hand limb), Ganymede (near the center), and Europa (just below and to the right of Ganymede's auroral footprint). These emissions, produced by electric currents generated by the satellites, flow along Jupiter's magnetic field, bouncing in and out of the upper atmosphere. They are unlike anything seen on Earth. This ultraviolet image of Jupiter was taken with the Hubble Space Telescope Imaging Spectrograph (STIS) on November 26, 1998. In this ultraviolet view, the aurora stands out clearly, but Jupiter's cloud structure is masked by haze. Saturn’s aurora was observed with Hubble in 2005. Images were obtained with the Advanced Camera for Surveys in the optical and STIS in the ultraviolet. The aurora appeared in Saturn’s southern polar region for several days. Hubble snapped a series of photographs of the aurora dancing in the sky. The snapshots show that Saturn's auroras differ in character from day to day -- as they do on Earth -- moving around on some days and remaining stationary on others. But compared with Earth, where auroral storms develop in about 10 minutes and may last for a few hours, Saturn's auroral displays always appear bright and may last for several days. Recently, NASA’s New Horizons mission imaged Pluto and two of its moons, Nix and Hydra, which were discovered by Hubble in 2005. Peering out to the dim, outer reaches of our solar system beyond Pluto, Hubble uncovered three Kuiper Belt objects (KBOs) that the agency's New Horizons spacecraft could potentially visit after it flies by Pluto in July 2015. The KBOs were detected through a dedicated Hubble observing program by a New Horizons search team that was awarded telescope time for this purpose. The lower set of Pluto images shows Hubble Space Telescope data from the Advanced Camera for Surveys exhibiting an icy, mottled, dark molasses-colored world undergoing seasonal surface color and brightness changes. Pluto has become significantly redder, while its illuminated northern hemisphere is getting brighter. These changes are most likely consequences of surface ice melting on the sunlit pole and then refreezing on the other pole, as the dwarf planet heads into the next phase of its 248-year-long seasonal cycle. Analysis shows the dramatic change in color took place from 2000 to 2002. Note that Hubble found four of Pluto’s five moons – Nix, Hydra, Styx and Kerberos. http://hubblesite.org/newscenter/archive/releases/2014/47/full/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2010/06/ http://hubblesite.org/newscenter/archive/releases/solar-system/pluto/2012/32/ and related links http://www.nasa.gov/nh_new-horizons-spots-small-moons-orbiting-pluto/#.VPnlP2TF_b4 http://pluto.jhuapl.edu/ ​ Other outer solar system objects: Eris is 1.27 times the mass of Pluto, and formerly the largest member of the Kuiper Belt of icy objects beyond Neptune. Hubble observations in 2006 showed that Eris is slightly physically larger than Pluto. But the mass could only be calculated by observing the orbital motion of the moon Dysnomia around Eris. Multiple images of Dysnomia's movement along its orbit were taken by Hubble and Keck. ​ http://hubblesite.org/newscenter/archive/releases/solar%20system/2007/24/image/c/format/web/ Also in 2002, Hubble measured a large object discovered in the outer solar system. It was the largest outer solar system object discovered since Pluto and was superseded by the observation of Eris. Approximately half the size of Pluto, the icy world is called "Quaoar" (pronounced kwa-whar). Quaoar is about 4 billion miles away, more than a billion miles farther than Pluto. Like Pluto, Quaoar dwells in the Kuiper belt, an icy belt of comet-like bodies extending 7 billion miles beyond Neptune's orbit. http://hubblesite.org/newscenter/archive/releases/2002/17/ The upper image, taken by Hubble, reveals the orbital motion of the planet Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit around its parent star, Fomalhaut. The planet will appear to cross a vast belt of debris around the star roughly 20 years from now. If the planet's orbit lies in the same plane with the belt, icy and rocky debris in the belt could crash into the planet's atmosphere. The black circle at the center of the image is caused by a device called a coronograph, which blocks out the otherwise overwhelming light from the bright star and allows reflected light from the belt and planet to be photographed. The Hubble images were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012. Fomalhaut is 25 light years (8 parsecs) away. ​ http://hubblesite.org/newscenter/archive/releases/2013/01/ The lower graphic demonstrates Hubble’s first detection ever of an organic molecule in the atmosphere of a Jupiter-sized planet orbiting another star. This breakthrough is an important step toward eventually identifying signs of life on a planet outside our solar system. The molecule found by Hubble is methane, which under the right circumstances can play a key role in prebiotic chemistry — the chemical reactions considered necessary to form life as we know it. The graphic shows a spectrum of methane with the configuration of the star and the planet (not to scale) in relation to Hubble. The object is 63 light years (19 parsecs) away. http://hubblesite.org/newscenter/archive/releases/2008/11/

  • Missions | SPACELIA

    MISSIONS Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More

  • Advertisement | SPACELIA

    Add Blocks Now you can book this advertisement blocks, for more information contact us threw email. Mail

  • Proxima Centauri b | SPACELIA

    Proxima Centauri b Proxima Centauri b is an exoplanet that orbits the red dwarf star Proxima Centauri, which is the closest known star to our Sun. Here's a detailed explanation of Proxima Centauri b, including information about its characteristics, atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of Proxima Centauri b: Size: Proxima Centauri b is classified as an exoplanet with a mass roughly similar to Earth's, making it about 1.3 times the mass of our planet. This places it in the category of terrestrial exoplanets, similar to Earth and Venus. Orbit: Proxima Centauri b orbits its host star, Proxima Centauri, at a very close distance, approximately 0.05 astronomical units (AU), or about 7.5 million kilometers (4.7 million miles). It completes an orbit in just around 11.2 Earth days. Habitability: Proxima Centauri b is located within the habitable zone (Goldilocks zone) of its star. This means it is in the region where conditions for liquid water to exist on the surface are possible, a key factor for potential habitability. 2. Atmosphere of Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing the atmospheres of exoplanets, especially those as distant as Proxima Centauri b, is a challenging task and often requires advanced telescopes and instruments. 3. The Search for Extraterrestrial Life or Aliens: Proxima Centauri b has generated significant interest in the search for extraterrestrial life due to its proximity to Earth and its location within the habitable zone. Scientists and astronomers are particularly interested in studying exoplanets like Proxima Centauri b because they could offer insights into the potential for life beyond our solar system. The search for extraterrestrial life extends beyond Proxima Centauri b and includes the study of other exoplanets both within and outside the habitable zone. Key aspects of this search involve looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. The discovery of life, if it exists, on Proxima Centauri b or any other exoplanet would be a profound scientific breakthrough and could have far-reaching implications for our understanding of life's prevalence in the universe. It's important to note that as of my last knowledge update in September 2021, there is no definitive evidence of extraterrestrial life, and the search continues to be an active and ongoing scientific endeavor. Future missions and advanced technology, such as the James Webb Space Telescope, are expected to provide more data and insights into the atmospheres and potential habitability of exoplanets like Proxima Centauri b. Comparison with Earth Proxima Centauri b and Earth are both planets, but they have significant differences in terms of their characteristics, orbits, and potential habitability. Here's a comparison between the two: 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms, making it a terrestrial planet with a solid surface. Proxima Centauri b: Proxima Centauri b is classified as an exoplanet, and its size and mass are roughly similar to Earth's, with a mass approximately 1.3 times that of Earth. This places it in the category of terrestrial exoplanets. 2. Parent Star and Orbit: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). It takes approximately 365.25 days to complete one orbit. Proxima Centauri b: Proxima Centauri b orbits a red dwarf star known as Proxima Centauri, which is cooler and smaller than the Sun. Its orbital distance is very close to its parent star, about 0.05 astronomical units, which is much closer than Earth's distance from the Sun. Proxima Centauri b completes an orbit in approximately 11.2 Earth days. 3. Habitability and Atmosphere: Earth: Earth is known for its diverse and life-sustaining atmosphere composed primarily of nitrogen (about 78%) and oxygen (about 21%), with trace amounts of other gases. It has liquid water on its surface, a stable climate, and a variety of ecosystems that support a wide range of life forms. Proxima Centauri b: Information about the specific composition and characteristics of Proxima Centauri b's atmosphere is not currently known. Detecting and analyzing exoplanet atmospheres, especially those as distant as Proxima Centauri b, is challenging and requires advanced telescopes and instruments. 4. Potential for Extraterrestrial Life: Earth: Earth is the only known planet to host a wide variety of life forms, from microorganisms to complex multicellular organisms, including humans. Proxima Centauri b: Proxima Centauri b is located within the habitable zone of its star, which means it could have conditions suitable for liquid water to exist on its surface. However, the presence of life on Proxima Centauri b is purely speculative at this point, and more research is needed to assess its habitability and the potential for extraterrestrial life. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-186f KEPLER-452b

  • Hubble's Discoveries | SPACELIA

    Hubble's Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Presenter please note: Much of the discussion in these slides, and most of the public’s attention, is focused on Hubble’s enormous repertoire of images. Here is a montage of some of Hubble’s best images that symbolize the breadth and depth of Hubble observations and the research being done. ​ In each image that follows, a timeline (shown here) will be shown so that viewers have an appreciation for how far away the object is and how long it takes for the light to travel to Hubble from that object.

  • Preset Portfolio

    Kepler's Exoplanets

  • Theories | SPACELIA

    Theories Scientific explanation of any topic Time Is Not Constant only one thing is constant and it is a change. okay for some reason i thought time is constant so when something is come from nothing so nothing is consist nothing not time also. so yes the question is when vacume is consist nothing so time is not constant. but here is a Einstein's Relativity theory is proved wrong as per this perspactive but no everything is right in it's limits. Origin Of Earth Origin of our universe is from big bang effect. and origin of our galaxy is to collab of two galaxies, but origin of our earth is ? , origin of our earth is from sun because age of our galaxy is roughly 13.6 billion years and age of our sun is 4.6 billion years and age of our earth is 4.5 billion years, so the origin of our earth is from sun as per my perspective. exploit on suns surface core is a origin of all planets and asteroids, exploit of sun and other rock is origin of our moon. so this is my basic phenomena. The BIg-Bang Theory The early theory of origin of origin of universe is The Big Bang Theory. which consist a nebular exploidation of two nebulas. this theory is a strongest theory of the origin of universe. when big bang cause dark mater and all galaxies are origin. all things of our universe is cause in this time. scientist strongly work on this theory. Georges Lemaitre || 1894 - 1966 General Relativity Theory The theory of relativity is a scientific theory proposed by Albert Einstein in 1905 and 1915 that fundamentally changed our understanding of space, time, and gravity. It has two main parts: Special relativity: which deals with objects moving at constant speeds, and shows that time is relative to the observer and that objects appear differently depending on the observer's position and motion. General relativity: which deals with the force of gravity and shows that it is not a force at all, but rather the curvature of spacetime caused by the presence of mass and energy. Albert Einstein || 1905 Heat Death Of The Universe The heat death of the universe theory proposes that, over an immense span of time, the universe will gradually reach a state of maximum entropy and energy equilibrium. As the universe expands, the average energy density decreases, leading to a cooling effect. Eventually, all usable energy will be uniformly distributed and no longer available for work or sustaining life. This scenario predicts the loss of structure, complexity, and organization as energy dissipates, resulting in a cold, sparse, and lifeless universe. Lord Kelvin || 1850 Multiness Of Thoughts What we are experiencing right now, whether we have a dream or a thought represents our future, it means that what we think will happen to us, so always keep positive thinking. You may have seen the movie Interstellar where a man controls the fourth diamentio from the future and how our present is connected to our past, this basic concept is what I call the concept of Multiness of Thoughts. this concept is also connected with quantum theories, because this theory also say that all thigs which we see is create with our thoughts and after we see it's die immediately. Quantum Theory Quantum theory, also known as quantum mechanics, is a foundational theory in physics that describes the behavior of particles at the smallest scales. It introduces the concept of quantized energy levels, probabilistic behavior, and the wave-particle duality. Quantum theory revolutionized our understanding of the microscopic world, providing a mathematical framework to calculate probabilities and predict particle interactions. Its applications range from explaining the behavior of atoms and molecules to enabling technologies like quantum computing and quantum cryptography. Quantum theory has fundamentally transformed our understanding of the nature of reality and continues to shape our exploration of the fundamental workings of the universe. Niels Bohr & Max Planck || 1900 Hubble's Law Hubble's Law, named after the astronomer Edwin Hubble, states that galaxies are moving away from us, and the farther they are, the faster they are receding. This law is based on the observation that the light from distant galaxies is shifted towards the red end of the electromagnetic spectrum, known as redshift. Hubble's Law provides evidence for the expansion of the universe and serves as a cornerstone of modern cosmology. By studying the redshift of galaxies, scientists can determine their distance and calculate the rate of cosmic expansion. Hubble's Law has contributed significantly to our understanding of the origin, evolution, and large-scale structure of the universe. Edwin Hubble's || 1929 Cosmic Inflation Cosmic inflation theory proposes that the universe underwent an extremely rapid expansion, known as cosmic inflation, in the earliest moments of its existence. This theory suggests that, shortly after the Big Bang, a tiny patch of space expanded exponentially, causing the universe to rapidly expand and flatten out. Cosmic inflation helps explain several observations, such as the uniformity of the cosmic microwave background radiation and the overall large-scale structure of the universe. It also provides a possible solution to the horizon problem and the flatness problem in cosmology. While cosmic inflation remains a theoretical concept, it has gained widespread acceptance and is considered a crucial component of our current understanding of the early universe. Alan Guth || 1980 String Theory String theory is a theoretical framework in physics that aims to unify all the fundamental forces and particles of nature. It proposes that the fundamental building blocks of the universe are not point-like particles but tiny, vibrating strings of energy. These strings exist in higher-dimensional spacetime and their vibrations give rise to different particles with various properties. String theory offers a promising path towards reconciling general relativity and quantum mechanics, two foundational theories that currently appear incompatible. It also suggests the existence of additional dimensions beyond the familiar three spatial dimensions and one time dimension. String theory is still an area of active research and has sparked numerous developments in theoretical physics, including the concept of holography and new insights into quantum gravity and black hole physics. Gabriele Veneziano || 1969 Dark Matter Theory Dark matter theory proposes the existence of a type of matter that does not interact with light or other forms of electromagnetic radiation but exerts a gravitational influence on visible matter. It is called "dark" because it does not emit, absorb, or reflect light, making it invisible and difficult to detect directly. Dark matter is inferred from its gravitational effects on galaxies and galaxy clusters, explaining the observed rotation curves of galaxies and the dynamics of galactic clusters. The exact nature of dark matter remains unknown, and its composition is a subject of ongoing research. The existence of dark matter is a crucial component in current cosmological models, accounting for a significant portion of the mass in the universe and shaping the large-scale structure we observe. Fritz Zwicky || 1933 Dark Energy Theory Dark energy theory is a concept in physics that attempts to explain the observed accelerated expansion of the universe. It suggests the existence of a mysterious form of energy that permeates all of space and drives this expansion. Dark energy is thought to possess negative pressure, counteracting the gravitational pull of matter and causing the universe to expand at an increasing rate. Its nature and origin remain elusive, with potential explanations ranging from a cosmological constant, as proposed by Einstein, to more exotic possibilities like quintessence or modifications of general relativity. Dark energy constitutes a significant fraction of the total energy density in the universe, but its precise properties and role in cosmic evolution continue to be active areas of scientific investigation. Adam Riess || 1998 Multiverse Theory Multiverse theory is a speculative concept in cosmology and theoretical physics that suggests the existence of multiple universes or parallel realities beyond our own observable universe. According to this theory, each universe within the multiverse could have its own unique physical laws, constants, and properties. The idea of a multiverse arises from attempts to explain various fundamental questions, such as the fine-tuning of physical constants and the origin of our universe. While there are different versions of multiverse theory, they generally propose that the vastness of possibilities extends beyond what we can observe, and that our universe is just one among countless others. The concept of a multiverse is still highly speculative and remains a topic of philosophical and scientific debate, with ongoing research exploring its potential implications and ways to test its validity. William James || 1895 Tagmark's Four Levels of Multiverse The concept of the multiverse is indeed a subject of ongoing scientific exploration and theoretical discussion. Some theories propose different levels or types of multiverse based on various hypotheses, such as: Level I Multiverse: This level of multiverse is based on the idea of an infinite or vastly large universe, where regions far beyond what we can observe contain regions similar to our observable universe. This concept arises from cosmic inflation theory. Level II Multiverse: This level of multiverse is related to the idea of bubble universes within an inflating space. According to eternal inflation theory, our universe could be just one of many "bubbles" embedded in a larger multiverse. Level III Multiverse: This level of multiverse stems from the concept of a "many-worlds interpretation" of quantum mechanics. It suggests that every quantum event spawns multiple parallel universes, resulting in a branching multiverse where every possible outcome of quantum events occurs in a different universe. Level IV Multiverse: This level of multiverse is often associated with the idea of mathematical or logical universes. It suggests that all conceivable mathematical structures or logical systems exist as separate universes. Max Tagmark Apple in a Box Spatial reasoning or problem-solving: In mathematics or logic puzzles, there are scenarios where you might have to imagine an apple placed inside a box and analyze its properties or movements within that confined space. Thought experiment: Philosophers and scientists often use thought experiments to explore concepts and theories. The "apple in a box" could represent a hypothetical situation used to illustrate a particular idea or phenomenon. Teaching tool: Teachers and educators might use the phrase "apple in a box" to simplify complex concepts for students, making it easier for them to understand and visualize abstract ideas. Perception and reality: The phrase might be used metaphorically to explore the difference between what we perceive (the apple in the box) and what objectively exists (the actual state of the apple). Simulation Theory Virtual Reality Hypothesis: Simulation theory proposes that our entire reality, including the universe and all its inhabitants, might be a computer-generated simulation created by an advanced civilization. Technological Mastery: The theory assumes that a highly developed society could create simulations indistinguishable from reality, complete with conscious beings who believe they are living genuine lives. Existential Questions: Simulation theory raises philosophical questions about the nature of consciousness, the meaning of existence, and the potential layers of reality, challenging conventional understandings of the universe. Speculative Nature: While captivating, simulation theory lacks empirical evidence and serves as a thought experiment that encourages us to ponder the nature of reality and our place within an intricate, simulated cosmos. Nick Bostrom | 2003 Special Relativity Theory Special relativity theory, proposed by Albert Einstein in 1905, is a fundamental theory in physics that revolutionized our understanding of space, time, and motion. It introduces two key principles: Constancy of the Speed of Light: The speed of light in a vacuum is the same for all observers, regardless of their relative motion. This means that the speed of light is an absolute constant. Relativity of Space and Time: Space and time are not absolute but depend on the observer's motion. Time can appear to pass differently for moving objects, and lengths can appear shorter when an object moves at high speeds. Special relativity has been extensively tested and confirmed, and it forms the basis for modern physics, helping us understand phenomena at high speeds and near the speed of light. Albert Einstirn || 1905 Twin Paradox The twin paradox is a thought experiment arising from Einstein's theory of special relativity. It involves two identical twins: one stays on Earth, while the other travels into space at a high speed and then returns. Due to time dilation, the traveling twin ages less than the twin who remained on Earth. This seems paradoxical, but it's resolved by considering the effects of acceleration and relative motion on time and space. The twin paradox illustrates the counterintuitive nature of time dilation and the relativistic effects predicted by special relativity. It's been confirmed through experiments and is a fundamental example of how the theory challenges our everyday understanding of time and motion.​ Quantum Entanglement Quantum entanglement is a bizarre, counterintuitive phenomenon that explains how two subatomic particles can be intimately linked to each other even if separated by billions of light-years of space. Despite their vast separation, a change induced in one will affect the other. In 1964, physicist John Bell posited that such changes can be induced and occur instantaneously, even if the particles are very far apart. Bell's Theorem is regarded as an important idea in modern physics, but it conflicts with other well-established principles of physics. For example, Albert Einstein had shown years before Bell proposed his theorem that information cannot travel faster than the speed of light . Perplexed, Einstein famously described this entanglement phenomenon as "spooky action at a distance." Erwin Schrödinger || 1935 The Infinite Hotel Paradox The Infinite Hotel Paradox is a mind-bending thought experiment in mathematics and philosophy. Imagine a hotel with an infinite number of rooms, and every room is occupied by a guest. When a new guest arrives and wants a room, the manager can still accommodate them by simply asking each current guest to move to the room with a number one higher than their current room. This frees up room 1 for the new guest. What's truly astonishing is that this process can be repeated infinitely, accommodating an infinite number of new guests in a seemingly already full hotel. It challenges our intuitive understanding of finite and infinite quantities, showcasing the paradoxical nature of infinity in a captivating way. David Hilbert's Theory Of Creation The theory of creation, often rooted in religious or mythological beliefs, posits that the universe, Earth, and all living beings were intentionally brought into existence by a divine or supernatural force. Various cultures and religions have their own creation narratives, such as the Judeo-Christian account of God creating the world in seven days, or the Hindu belief in the cosmic dance of Lord Shiva as the source of creation. These theories often serve as explanations for the origins of the cosmos and life itself, offering a framework for understanding our existence and our place in the universe. While the theory of creation is deeply ingrained in cultural and spiritual traditions, it coexists alongside scientific theories of evolution and cosmology, sparking ongoing discussions and debates about the nature of our origins. Charles Darwin || 1859 Grandfather Paradox The grandfather paradox is a thought experiment in the realm of time travel and theoretical physics. It revolves around a hypothetical situation where a person travels back in time and encounters their own grandfather before their grandfather has children. The paradox arises when the time traveler interferes with the past in a way that prevents their own existence. For example, if the time traveler were to prevent their grandparents from meeting or somehow cause their grandfather's death before he could have children, it would create a logical inconsistency. If the time traveler was never born, how could they have traveled back in time in the first place to create the interference? The grandfather paradox raises questions about the nature of time, causality, and the possible consequences of time travel. It's often discussed in discussions about the feasibility and potential paradoxes associated with time travel, but it also highlights some of the challenging problems that arise when contemplating journeys through time. We are nothing.... What is vacuum?, How is vacuum formed?, We believe that there is no air at all in vacuum, meaning vacuum is an empty substance which is completely empty, do you understand this? Wrong, vacuum is not empty matter, vacuum is the space formed by the formation of matter and antimatter. I believe that in this universe of ours, there is an anti-avatar of all the things, like the white hole of the black hole, similarly the anti-matter of the matter. So what are we?, we are also a matter, so can we also have any anti form, absolutely possible, that is why it is called vacuum, and this is how our entire universe is formed, if we say If something came from nothing, then that means we are that nothing. In the end this entire space becomes zero, so can we call ourselves nothing? Chess Square Theory COMING SOON............. Visit Now Parallel World Travel We have heard a lot about time travel, it feels good to hear it but only in imagination and theories, we already know the rest of the reality, but today we have brought another theory in front of you which can happen in the past. There is a thesis based on the above but yes, you will definitely feel happy after reading it. Visit Now We are our GOD This perspective posits that while we are not divine beings, we do possess the capacity to control and manipulate our own destinies, akin to gods in our own right. Drawing parallels with the movie Interstellar, the notion of being the orchestrator of our lives is highlighted. The theory extends to addressing various enigmas such as the Egyptian pyramids and sightings of UFOs, attributing them to our relationship with space. It promises to unravel mysteries and provide answers, though it also emphasizes the importance of mindset in adopting such a worldview. Visit Now The Fermi Paradox The Fermi Paradox is the apparent contradiction between the high probability of extraterrestrial civilizations existing in the vast universe and the lack of any observable evidence or contact with such civilizations. Considering the sheer number of potentially habitable planets, the age of the universe, and the speed at which life emerged on Earth, it seems logical that other advanced civilizations should exist. However, there are various proposed solutions to this paradox, ranging from the possibility that life is rare, to the idea that advanced civilizations self-destruct, or that they communicate in ways we cannot yet detect. Despite extensive efforts, we have not found conclusive evidence of extraterrestrial life, leaving the Fermi Paradox as a major unresolved question in science. Inflationary Cosmology Inflationary cosmology, proposed by Alan Guth in 1980, suggests a rapid expansion of space in the early universe driven by an inflaton field, addressing puzzles in standard Big Bang cosmology. Supported by observations like cosmic microwave background radiation, inflation explains the universe's uniformity and predicts a nearly scale-invariant spectrum of density fluctuations. Challenges include the initial conditions problem and implications for a multiverse, but inflation remains a key area of cosmological research, shaping our understanding of the universe's early history. Visit Now Blackhole Information Paradox The Black Hole Information Paradox presents a fundamental challenge in reconciling quantum mechanics and general relativity within the context of black holes. It arises from the apparent loss of information beyond the event horizon, contradicting the principle of information conservation in quantum mechanics. Proposed solutions include Hawking radiation, the firewall paradox, holographic principles, and theories of quantum gravity such as string theory. Despite ongoing research, a definitive resolution to this paradox remains elusive, representing a crucial frontier in theoretical physics. Visit Now String Theory String theory proposes that fundamental particles aren't point-like but instead tiny, vibrating strings. It attempts to reconcile quantum mechanics and general relativity, aiming for a unified theory of physics. String theory posits extra dimensions beyond the usual three spatial dimensions and one time dimension, offering a framework for understanding the fundamental nature of reality. However, it remains a highly speculative and mathematically complex theory without experimental confirmation. Visit Now

  • KEPLER-186f | SPACELIA

    KEPLER-186f Kepler-186f is an Earth-sized exoplanet located 500 light-years away in the constellation Cygnus. It orbits a red dwarf star, Kepler-186, within its habitable zone, where conditions might allow liquid water to exist. This discovery sparked interest in the search for potentially habitable exoplanets and raised questions about the possibility of extraterrestrial life beyond our solar system. However, limited data about its atmosphere and surface make it challenging to assess its true habitability. 1. Characteristics of Kepler-186f: Size: Kepler-186f is considered an Earth-sized exoplanet, with an estimated radius about 1.1 times that of Earth. This makes it one of the few exoplanets discovered at the time that was close in size to our own planet. Parent Star: Kepler-186f orbits a red dwarf star known as Kepler-186, which is cooler and smaller than our Sun. Kepler-186 is classified as an M-dwarf star. Orbit: Kepler-186f is in a relatively tight orbit around its host star, completing one orbit approximately every 130 Earth days. It receives about a third of the energy from its star compared to Earth's energy from the Sun. Habitable Zone: One of the most intriguing aspects of Kepler-186f is its location within the habitable zone (Goldilocks zone) of its star. The habitable zone is the region around a star where conditions might be suitable for liquid water to exist on the planet's surface, which is a key factor for the potential development of life as we know it. 2. Atmosphere of Kepler-186f: Information about the specific composition and characteristics of Kepler-186f's atmosphere is not currently known. Detecting and analyzing the atmospheres of exoplanets, especially those as distant as Kepler-186f, is a challenging task that often requires advanced telescopes and instruments. Detailed studies of an exoplanet's atmosphere can provide important insights into its potential habitability. 3. Potential for Extraterrestrial Life: Kepler-186f's location within the habitable zone of its star makes it an intriguing candidate for the potential existence of extraterrestrial life. The habitable zone represents the region where conditions might be right for liquid water to exist on the planet's surface, which is a crucial ingredient for life as we know it. However, the presence of liquid water alone does not guarantee the existence of life. Other factors, such as the composition of the planet's atmosphere, the presence of essential nutrients, geological activity, and the stability of the climate, also play vital roles in determining habitability. Detecting signs of life on Kepler-186f or any exoplanet is extremely challenging and would likely require advanced telescopes capable of analyzing the planet's atmosphere for biomarkers (e.g., oxygen, methane) or other potential signs of biological activity. Kepler-186f and Earth have some similarities, such as their Earth-sized classification and the fact that Kepler-186f is located within the habitable zone of its star. However, they also have several key differences. Here's a comparison between Kepler-186f and Earth: ​ 1. Size and Mass: Earth: Earth is approximately 12,742 kilometers (7,918 miles) in diameter and has a mass of about 5.972 × 10^24 kilograms. Kepler-186f: Kepler-186f is considered an Earth-sized exoplanet, with an estimated radius about 1.1 times that of Earth. Its exact mass is not precisely known but is believed to be greater than Earth. ​ 2. Parent Star and Orbit: Earth: Earth orbits the Sun, a G-type main-sequence star (G2V), at an average distance of about 149.6 million kilometers (93 million miles). It completes one orbit around the Sun in approximately 365.25 days. Kepler-186f: Kepler-186f orbits a red dwarf star known as Kepler-186, which is cooler and smaller than our Sun. Its orbit around Kepler-186 takes approximately 130 Earth days. ​ 3. Habitable Zone: Earth: Earth is located within the habitable zone of the Sun, where conditions for liquid water are ideal for the existence of life. Kepler-186f: Kepler-186f is also located within the habitable zone of its star, Kepler-186. This means that, theoretically, it could have conditions suitable for liquid water to exist on its surface. ​ 4. Atmosphere: Earth: Earth has a diverse and life-sustaining atmosphere composed primarily of nitrogen (about 78%) and oxygen (about 21%), with trace amounts of other gases. The atmosphere plays a critical role in regulating temperature and supporting life. Kepler-186f: The specific composition and characteristics of Kepler-186f's atmosphere are not currently known. Detailed studies are needed to determine the presence and properties of its atmosphere. ​ 5. Surface Conditions: Earth: Earth has a variety of surface conditions, including continents, oceans, and various climate zones. It supports a wide range of life forms and ecosystems. Kepler-186f: The specific surface conditions of Kepler-186f, such as the presence of oceans, continents, or any geological activity, are not known due to limited observational data. ​ 6. Potential for Extraterrestrial Life: Earth: Earth is known to host a diverse array of life, from microorganisms to complex multicellular organisms, including humans. Kepler-186f: While it is located within the habitable zone and is considered an interesting candidate for further study, the presence of extraterrestrial life on Kepler-186f is purely speculative at this point. It is one of the exoplanets that has garnered attention for its potential habitability. Other Articles...... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b Proxima Centauri b TRAPPIST-1

  • Discoveries | SPACELIA

    Space Discoveries This is your About Page. It's a great opportunity to give a full background on who you are, what you do and what your website has to offer. Double click on the text box to start editing your content and make sure to add all the relevant details you want to share with site visitors. Nasa's Time Line Hubble's Discoveries Presenter please note: Much of the discussion in these slides, and most of the public’s attention, is focused on Hubble’s enormous repertoire of images. View More Hubble's Deep Field The Hubble Space Telescope has made over 1.5 million observations since its launch in 1990, capturing stunning subjects such as the Eagle Nebula and producing data that has been featured in almost 18,000 scientific articles. But no image has revolutionized the way we understand the universe as much as the Hubble Deep Field . View More Hubble's Nebulae Hubble telescope discovered some nebulae here is an image and detail of the nebulae and other information about it. View More Hubble's Star Clusters Billions of trillions of stars illuminate the galaxies of our universe. Each brilliant ball of hydrogen and helium is born within a cloud of gas and dust called a nebula. Deep within these clouds, knots can form, pulling in gas and dust until they become massive enough to collapse under their own gravitational attraction. View More Hubble's Galaxies Our Sun is just one of a vast number of stars within a galaxy called the Milky Way, which in turn is only one of the billions of galaxies in our universe. These massive cosmic neighborhoods, made up of stars, dust, and gas held together by gravity, come in a variety of sizes, from dwarf galaxies containing as few as 100 million stars to giant galaxies of more than a trillion stars. View More Hubble's Galaxy Discovery Our Sun is just one of a vast number of stars within a galaxy called the Milky Way, which in turn is only one of the billions of galaxies in our universe. These massive cosmic View More Hubble's Nebula Discovery ​ The space between stars is dotted with twisting towers studded with stars, unblinking eyes, ethereal ribbons, and floating bubbles. These fantastical shapes, some of the universe’s most visually stunning constructions, are nebulae, clouds of gas and dust that can be the birthplace of stars, the scene of their demise ― and sometimes both. View More Hubble's Planetary Discoveries Hubble, however, has made some unique contributions to the planet hunt. Astronomers used Hubble to make the first measurements of the atmospheric composition of extrasolar planets. Hubble observations have identified atmospheres that contain sodium, oxygen, carbon, hydrogen, carbon dioxide, methane and water vapor. View More Kepler's Exoplanets NASA's Kepler spacecraft was launched to search for Earth-like planets orbiting other stars. It discovered more than 2,600 of these "exoplanets"—including many that are promising places for life to exist. View More Space discovery of year 2021 Top 9 Discoveries of year 2021, visit page by clicking view more button. View More

  • Jain geography | SPACELIA

    Jain geography ​All about Jain's geography and space science Introduction The universe for Jains is an elaborate system. Jain cosmology is very distinctive, although it shares some features with other Indian religious traditions. It is centred on the everlasting and non-originating nature of the universe, and thus excludes the notion of a creator-god. As written by a leading monastic figure from the 12th century, ‘the universe having the shape of a man standing with arms akimbo, with feet apart, filled with substances continuously being created, preserved and destroyed, has never been produced by anyone and is not sustained by anyone either. It exists by itself, without any support’.[1] Although Jains do not worship a creator-god, deities do exist, as mediators between the perfected souls of the Jinas and the imperfect world of human experience, and are a part of the Jain cosmology. Structure of the Jain Universe The Jains distinguish two types of space. The first is the world space (loka-ākāśa), which is a vast but limited area where all souls live in the different body-forms they take according to their rebirths in the various worlds. The second is the non-world space (aloka-ākāśa), which is endless. The Jain universe is perfectly structured and ordered. One of its governing principles is symmetry and repetition, so that ‘to know one part is to know the whole’. It can be viewed as ‘a self-replicating composite’ with, for example, a northern region the exact replica of its southern counterpart, halves being identical, etc. The Jain universe is thought of in terms of dimensions and quantities of units. Jain thinkers have produced a vast vocabulary to describe and understand units of time and space, going from the smallest to the largest, beyond what can be imagined. The smallest unit is the atom. Infinite combinations of atoms make up the smallest unit of measurement. At the other extreme, Jains have devised a refined analysis of extremely large numbers, considering the numerable, the innumerable and the infinite. Jain cosmology gives an important place to mathematical concepts and calculations, so that mathematical treatises written by the Jains may take their illustrative examples from cosmological contexts. Śvetāmbaras and Digambaras agree on the structure of the universe and its elements but differ on many names and numbers. ​ Grasping Jain cosmology is vital to understanding the Jain religion. The soul is an innately pure substance. But, due to embodiment and activity, good or bad, it accumulates karma, which in the Jain understanding means physical matter. This alters the purity of the soul and generates cycles of rebirths within the universe until this finally ends. Rebirth can take one of the following four forms of destiny (gati): 1. as a human (manuṣya); 2. as an inhabitant of the hells (naraka); 3. as a deity (deva); or 4. as an animal or plant (tiryag). Spiritual progression requires an understanding of these cosmological theories. Contemplating the universe is also included within the system of reflection-topics (anuprekṣā). Jambudweep This topic can not be logically or physically proven. It can only be understood on the base of Aagam Vani. You may not be able to beleive it if you think it from modern view as it exists right now. This has to be taken on faith to understand and the main foundation of its understanding is Kevalgyan. Two vertical lines are Tras Nadi where Tras Jeev live. This is in the middle with 13 Raju height. Not covering 1 Raju at the top. Every structure we understand or is described is contained within Tras Nadi. Everything outside is only 1 sensory Jeev called Sthavar Jeev. ​ Middle part is Madhya Lok. Middle Earth. 5 Meru parvat in the middle. Sudarshan Meru/Sumeru is the basis of differentiation of 3 Lok. Madhyalok height is defined by Sumeru Parvat. Below it is Adholok. Above it is Urdhvalok. Physical Dimensions: Bottom – 7 Raju Middle – 1 Raju Up Middle – 5 Raju Top – 1 Raju Depth – 7 Raju Height – 14 Raju Volume 343 Raju^3 Scale: Raju/Rajju is a measurement unit. 1 Raju = Infinite Yojan 1 Yojan = 2000 Kos 1 Kos = 2 Miles 1 Mile = 1.64 Km Strange Facts ​ In front of Jain Geography, the principles and discoveries of our science and space become false, because in Jain Geography, the house is considered as a divine plane, whatever nature the house has, that plane will also be of that type, and in the same way in Jain Geography The sun is considered as the plane of heat and the moon as the plane of coolness and an interesting fact about it is that in Jain geography there are two suns and two moons. According to Jainism, man can never go to the Moon or any other planet! Yes, you are listening right, I know that it sounds very different, but it is not a matter that these things are only heard somewhere, this principle is also a reality in Puranas and the map you are seeing above is also Jambudweep. It is from Another special thing in this is that in the middle of Jambudweep, there is Mount Meru, at some distance of which all the things of this universe are present, and according to this, we humans can never reach this sacred plane and all the other things, there is also a solid proof of this. There is a reason which I will tell you later. Yes, I know you will definitely be shocked to hear all this, but it is true and there is also one thing that Jain geography is very different and unique from our modern space science, but I will tell you further in the rest of the information. Who created our Universe according to Jainism No, as per Jainism Universe is eternal. It's neither created nor shall it ever collapse. ​ Now to the question, i.e. what led to the creation (read structure) of the universe ? ​ To keep things simple, we will just concentrate on the middle world where we humans live as it will help us better understand the structure and operations of the universe on the foundations of our current knowledge on the subject. What is outside of the Universe Well, that would define how you describe the universe as. ​ As per Jainism, the universe consists of broadly two regions viz Lokakash and Alokakash 1st region Lokakash is the region that consists of all things made of a material that exhibits the property of Fusion (Pud) and Fission (Gal) which we call matter today. Its this region of the universe that hosts our planet and all other alien habitable planets that support intelligent lifeforms, along with higher and lower planes where demigods and hellish beings reside.

  • Trappist-1 | SPACELIA

    TRAPPIST-1 TRAPPIST-1 is a star system located about 39 light-years away from Earth in the constellation Aquarius. It gained significant attention and interest in the scientific community and the public due to the discovery of seven Earth-sized exoplanets orbiting the ultra-cool dwarf star TRAPPIST-1. Here's a detailed explanation of the TRAPPIST-1 system, including information about its characteristics, the potential for atmosphere, and the search for extraterrestrial life or aliens 1. Characteristics of TRAPPIST-1: Star Type: TRAPPIST-1 is an ultra-cool dwarf star classified as an M8V-type star. It is much cooler and smaller than our Sun, with a surface temperature of about 2,550 degrees Celsius (4,622 degrees Fahrenheit). Number of Exoplanets: The TRAPPIST-1 system is known to host seven exoplanets. These exoplanets are designated as TRAPPIST-1b, c, d, e, f, g, and h. They were discovered through the transit method, which involves observing the periodic dimming of the star's light as the planets pass in front of it. Habitability Zone: Several of the exoplanets in the TRAPPIST-1 system are located within the habitable zone, also known as the Goldilocks zone. This is the region around a star where conditions might be suitable for liquid water to exist on the planets' surfaces, a key factor for potential habitability. 2. Atmosphere of TRAPPIST-1 Exoplanets: Information about the specific composition and characteristics of the atmospheres of the TRAPPIST-1 exoplanets is not fully known. Detecting and characterizing exoplanet atmospheres is a challenging task that requires advanced telescopes and instruments. Astronomers have conducted studies to analyze the potential atmospheres of these exoplanets. The presence of atmospheres would be an essential factor in determining their habitability and potential for hosting life. 3. The Search for Extraterrestrial Life or Aliens: The discovery of seven Earth-sized exoplanets in the TRAPPIST-1 system, especially those within the habitable zone, has made TRAPPIST-1 a significant target in the search for extraterrestrial life. The habitable zone is a region where conditions might be right for liquid water to exist, a key ingredient for life as we know it. The search for extraterrestrial life involves looking for signs of habitability and biomarkers, such as the presence of water, oxygen, and methane, in exoplanet atmospheres. It also involves the study of planetary conditions, including surface temperature and radiation levels, to assess the potential for life to thrive. While the discovery of the TRAPPIST-1 exoplanets is exciting, the actual presence of extraterrestrial life remains purely speculative. The search for life beyond Earth is an ongoing scientific endeavor, and it requires more advanced technology and instruments, including next-generation telescopes like the James Webb Space Telescope, to provide more insights. 4. The Possibility of Aliens: The term "aliens" typically refers to intelligent extraterrestrial beings. While the search for microbial life or even simple life forms is a primary focus in astrobiology, the search for intelligent civilizations, often referred to as the search for extraterrestrial intelligence (SETI), remains an active area of research. SETI involves listening for radio signals or other types of communication from advanced civilizations in the universe. So far, no definitive evidence of extraterrestrial intelligent life or aliens has been found. Comparison with Solar System The TRAPPIST-1 system and our solar system are two different planetary systems in the Milky Way galaxy. While both contain multiple celestial bodies, there are significant differences between them. Here's a comparison of the TRAPPIST-1 system and our solar system: Number of Stars: Solar System: Our solar system is a single-star system, with the Sun as the central star. TRAPPIST-1 System: The TRAPPIST-1 system is a multi-star system, consisting of a red dwarf star called TRAPPIST-1 and at least seven confirmed planets orbiting it. Central Star: Solar System: The Sun is a G-type main-sequence star (a yellow dwarf). TRAPPIST-1 System: TRAPPIST-1 is an M-type dwarf star, which is much cooler and less massive than the Sun. Planetary Orbits: Solar System: In the solar system, planets have relatively stable, nearly circular orbits. TRAPPIST-1 System: The TRAPPIST-1 planets have much closer orbits to their star, with some being in the habitable zone. These orbits are closer to their star compared to most planets in our solar system. Planetary Composition: Solar System: The planets in our solar system have diverse compositions. The inner planets (Mercury, Venus, Earth, and Mars) are rocky, while the outer planets (Jupiter, Saturn, Uranus, and Neptune) are gas giants or ice giants. TRAPPIST-1 System: The TRAPPIST-1 planets are believed to be rocky, similar to the inner planets in our solar system. Some may have liquid water on their surfaces. Habitability: Solar System: Earth, in our solar system, is the only known planet with conditions suitable for life as we know it. TRAPPIST-1 System: Some of the TRAPPIST-1 planets are in the habitable zone, where liquid water could exist. This makes them potential candidates for studying the possibility of life beyond Earth. Number of Planets: Solar System: Our solar system has eight recognized planets, with Pluto being classified as a dwarf planet. TRAPPIST-1 System: At least seven planets have been discovered in the TRAPPIST-1 system. Planetary Sizes: Solar System: The planets in our solar system vary in size from small rocky planets like Mercury to massive gas giants like Jupiter. TRAPPIST-1 System: The TRAPPIST-1 planets are thought to be similar in size to Earth and its neighboring planets. Exploration: Solar System: Our solar system has been extensively explored by spacecraft, including missions to all eight recognized planets, numerous moons, and even a few asteroids and comets. TRAPPIST-1 System: As of my knowledge cutoff date in September 2021, the TRAPPIST-1 system had been observed and studied from a distance through telescopes, but no direct spacecraft missions had been sent to explore it. Related Articles....... Dark Energy Multiness of Thoughts The Dream Mission Creation of Mind Loop STAR VFTS102 KEPLER-452b KEPLER-186f Proxima Centauri b

  • SPACELIA | space for space science

    The Messier Objects Unlock the mysteries of the Messier Catalog! Our blog series unveils the fascinating deep-sky objects any astronomy enthusiast can observe. Start Now The Unique Galaxies Unveil the wonders of the cosmos! Our blog series dives into unique galaxies, exploring their shapes, formation, and the secrets they hold. Start Now MAP OF THE SOLAR SYSTEM VIEW MAP SPACE RESEARCH PROGRAM RESEARCH Blogs READ OUR WRITINGS EXOPLANET MISSION BINARY SYSTEM PHOTO ALBUM GALLERY GALLERY NEWS GALLERY Members Invite SPACELIA انضم إلينا على الجوال! قم بتنزيل تطبيق Spaces by Wix وانضم إلى «SPACELIA» للبقاء على اطلاع دائم بسهولة في أثناء التنقل. إرسال البلد +1 رقم الهاتف Contact Us Subscribe Form Join Thanks for subscribing!

  • Religious Point of view | SPACELIA

    Religious Point of View

  • Articles | SPACELIA

    Research Papers Articles STAR VFTS102 We present a spectroscopic analysis of an extremely rapidly rotating late O-type star, VFTS102, observed during a spectroscopic survey of 30 Doradus. VFTS102 has a projected rotational velocity larger than 500 km s−1 and probably as large as 600 km s−1; as such it would appear to be the most rapidly rotating massive star currently identified. Its radial velocity differs by 40 km s−1 from the mean for 30 Doradus, suggesting that it is a runaway. View More Dark Energy In the late 1990s, astronomers found evidence that the expansion of the universe was not slowing down due to gravity as expected. Instead, the expansion speed was increasing. Something had to be powering this accelerating universe and, in part due to its unknown nature, this “something” was called dark energy. View More Zombie Planet Zombie planets, also known as "pulsar planets" or "planets around pulsars," are a fascinating and relatively rare astronomical phenomenon. View More The Dream Mission People must have had many dreams and those dreams would be very unique, but my dream is very unique. Today I will share with you this dream journey full of very interesting and adventures. In this dream of mine, I have done the complete mission of Mars and there are many twists in that too, which I will tell you further in this article. The article is The Dream Mission View More Creation of Mind Loop What we doing, what we experiencing, what we thinking is a creation of mind, and it's just a thoughts View More

  • Courses (All) | SPACELIA

    MISSIONS Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More Item Title This is placeholder text. To connect this element to content from your collection, select the element and click Connect to Data. Read More

bottom of page